首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《中国化学快报》2023,34(10):108315
Heme responsible for the dioxygen fixation, transport and conversion is a metalloporphyrin complex highly dependent on its diverse geometry of ligand. In this work, a trans-ortho-di-strapped zinc porphyrin with dome-like deformation was synthesized by thermodynamically controlling the formation of trans-precursor of porphyrinogen. Its single-crystal structure demonstrated that the asymmetric treatment of porphyrin achieves three goals of creating two secondary coordination sphere (SCS) bulks, maintaining a unique dome deformation, and making atomic out-of-plane deviation. In this way, this metallic complex integrates at least three key features of the pocket structure, the differentiated axial ligations, and the ring distortion, making it an ideal heme analog.  相似文献   

2.
Two generations of nitrobenzhydrol-based photocages for Zn(2+) have been prepared and characterized. The first series includes the tridentate ZinCast-1 utilizes a bis-pyridin-2-ylmethyl-aniline ligand that forms a 5,5-chelate ring upon metal binding. The related photocages ZinCast-2 with a N-[2-(pyridine-2-yl)ethyl]-N-(pyridine-2-ylmethyl)aniline (5,6-chelate ring) and ZinCast-3 with a N,N-bis[2-(pyridine-2-yl)ethyl]aniline (6,6-chelate ring) were synthesized for comparative studies. The complexes formed by the ions Cu(2+), Zn(2+) and Cd(2+) with three ZinCast and their photoproducts (ZinUnc) were interrogated by UV-Vis spectroscopy. The studies indicate that ZinCast-1 forms complexes of the highest stability and ZinCast-3 exhibits the most significant changes in metal affinity upon uncaging. These results suggest that the changes in nitrogen atom donor ability as well as the initial complex stability must be considered to design a photocage with the desired properties. The composite results were used to design ZinCast-4 and ZinCast-5, the second generation photocages that incorporate an additional adjacent ether ligand into the Zn(2+) chelator.  相似文献   

3.
The solution structure of coenzyme B12 (5′-deoxyadenosylcobalamin, AdoCbl) and the corresponding cobinamide, AdoCbi+, in which the axial nucleotide has been chemically removed, have been investigated using NMR-restrained molecular dynamics (MD) and simulated annealing (SA) calculations. The nOe cross peaks in the ROESY spectrum of both AdoCbl and AdoCbi+ are consistent with the presence of at least two principal conformations for each compound in solution. In the first, termed the southern conformation, the adenosyl (Ado) ligand is over the C ring of the molecule, the structure observed in the solid state. In the second, the Ado ligand has undergone an anticlockwise rotation and is over C10 in the eastern quadrant of the molecule. A two-state MD/SA simulation was used omitting nOes that arise only from the eastern conformation and that arise only from the southern conformation, respectively. Consensus structures were obtained by averaging the coordinates of 25 annealed structures of the southern and eastern conformations, respectively, of AdoCbl and AdoCbi+, followed by energy minimization. The consensus structure of the southern conformation of AdoCbl agrees well with the solid-state structure and has a very similar corrin fold angle. Several observations show that AdoCbl is considerably more rigid than AdoCbi+, and indeed is one of the most rigid cobalt corrinoids studied by these methods to date: the variability in the conformations of the corrin ring between the family of 25 annealed structure and the consensus structure is much smaller for AdoCbl than for AdoCbi+; during MD simulations, the previously demonstrated flexibility of the corrin ring as gauged by the corrin ruf angle (C5–Co–C15) is preserved for AdoCbi+ but is considerably diminished in AdoCbl because of a decrease in the maximum fold angle and an increase in the minimum fold angle achieved in the latter; the range of values of the Co–C bond length experienced in AdoCbi+ is substantially larger than in AdoCbl; the Ado ligand visits many more orientations relative to the corrin ring in AdoCbi+ than in AdoCbl; the pyrrole rings in AdoCbl undergo smaller deformations than in AdoCbi+; and the “breathing motion” of the corrin ring in which C5, C10 and C15 oscillate from above to below the mean corrin plane is much less pronounced in AdoCbl than in AdoCbi+. This rigidity is attributed to the presence of two bulky ligands in AdoCbl, the Ado ligand in the upper (β) axial position and the 5,6-dimethylbenzimidazole (bzm) ligand in the lower () axial ligand position, in contrast to the other structures which have only one or other of these two bulky ligands. The corrin fold angle in AdoCbl is significantly larger than that in AdoCbi+, a finding that is in agreement with a previous observation that CH3Cbl has a larger fold angle than CH3Cbi+; this implies that base-on corrins are under steric strain.  相似文献   

4.
The story of the outset of the concept of immortal polymerization is presented. Immortal polymerization is the polymerization that gives polymers with a narrow molecular distribution, even in the presence of a chain transfer reaction, because of its reversibility, which leads to the revival of the polymers once dead, that is, the immortal nature of the polymers. As a result, immortal polymerization can afford polymers with a controlled molecular weight, the number of polymer molecules being more than that of the initiator. The compound that plays a leading role is metalloporphyrin, in which the metal‐axial ligand bond has an unusually high reactivity. Immortal polymerization can be carried out in the ring‐opening polymerizations of epoxides, episulfides, and lactones by the selection of an appropriate metalloporphyrin as the initiator and a protic compound as the chain transfer agent. Immortal polymerization is an effective method for synthesizing end‐functional polymers and oligomers with narrow molecular weight distributions. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2861–2871, 2000  相似文献   

5.
Photo‐functional supramolecular lanthanides assemblies have shown great potential in the materials and biomedical fields. Two new tri(tridentate) ligands ( L3 and L4 ) highlighting small variation of the connection position to the central tridentate linkers have been designed, which leads to the emergent formation of either Ln3L3‐type sandwich structures or Ln4L4‐type tetrahedral cages. Moreover, nonlinear enhancement of lanthanide luminescence based on the modulation of inter‐ligand charge‐transfer states has been revealed on the mix‐ligand Ln3L3 sandwiches. Our results provide important guidance for structure‐design and photoluminescence optimization of supramolecular lanthanide‐organic assemblies.  相似文献   

6.
The synthesis and characterization of a mononuclear nickel(II) complex [Ni(L(2))](ClO(4))(2) (1) and an analogous mononuclear copper(II) complex [Cu(L(2))](ClO(4))(2) (2) of a 15-membered azamacrocycle (L(2) = 3-(2-pyridyl)-6,8,8,13,13,15-hexamethyl-1,2,4,5,9,12-hexaazacyclopentadeca-5,15-diene) are reported. The macrocyclic ligand is formed during the reaction of 4,4,9,9-tetramethyl-5,8-diazadodecane-2,11-dione dihydrazone (L(1)) with pyridine-2-aldehyde (PyCHO) templated by metal ions. The X-ray crystal structure of 1 exhibits a distorted square-pyramidal coordination geometry, where the metal ion sits in the macrocyclic cavity and the pendant pyridine group of L(2) occupies the axial position. While 1 is stable in the presence of an excess of PyCHO, 2 reacts further with copper(II) salt and PyCHO to form a mononuclear copper(I) complex, [Cu(H(2)L(3))](ClO(4))(3) (3). The structure of the complex cation of 3 reveals a distorted tetrahedral coordination geometry at the copper center with a pseudo 2-fold screw axis. A two-dimensional (2D) polymeric copper(II) complex, {[Cu(2)(L(4))(2)](ClO(4))(2)}(n) (4) is obtained by reacting complex 2 (or [Ni(L(1))](ClO(4))(2)) with copper(II) perchlorate and pyridine-2-aldehyde in a methanol-water solvent mixture. Complex 4 is also obtained by treating 3 with copper(II) perchlorate and pyridine-2-aldehyde in the presence of a base. The X-ray structural analysis of 4 confirms the formation of a pyrazolate bridged dimeric copper(II) complex. The extended structure in the solid state of 4 revealed the formation of a 2D coordination polymer with the dimeric core as the repeating unit. The ligand (HL(4)) in 4 is a 3,4,5-trisubstituted pyrazole ring formed in situ via C-C bond formation and represents an unprecedented transformation reaction.  相似文献   

7.
The reaction between pyridine-2-carbaldehyde and zinc chloride in wet MeCN yielded a zinc chelate complex with hemiacetal formed in situ from the hydrated pyridine-2-carbaldehyde and the second molecule of pyridine-2-carbaldehyde. According to X-ray diffraction data, the pentacoordinated environment of the zinc ion is formed by two chlorine atoms and the N,N',O-tridentate ligand. In the crystal, molecules are combined into a 3D supramolecular framework due to the intermolecular hydrogen bonds O–H···Cl, C–H···Cl, and π–π stacking interactions between pyridine rings.  相似文献   

8.
This study describes the modulation of tunneling probabilities in molecular junctions by switching one of two parallel intramolecular pathways. A linearly conjugated molecular wire provides a rigid framework that allows a second, cross-conjugated pathway to be effectively switched on and off by protonation, affecting the total conductance of the junction. This approach works because a traversing electron interacts with the entire quantum-mechanical circuit simultaneously; Kirchhoff's rules do not apply. We confirm this concept by comparing the conductances of a series of compounds with single or parallel pathways in large-area junctions using EGaIn contacts and single-molecule break junctions using gold contacts. We affect switching selectively in one of two parallel pathways by converting a cross-conjugated carbonyl carbon into a trivalent carbocation, which replaces destructive quantum interference with a symmetrical resonance, causing an increase in transmission in the bias window.  相似文献   

9.
Heteronuclear, supramolecular ring and cage complexes have been constructed from a pyridyl catechol ligand, TiO(acac)2, and PdCl2(CH3CN)2. These two complexes are quantitatively interconvertible, in which Ti4+-centered coordination changes take place between a well-known Ti(catecholato)3 and a newly established TiH(catecholato)2(acetylacetonato) structures. The Ti4+-centered structural changes arise from the changes in the component fraction and basicity condition.  相似文献   

10.
We developed a metalloporphyrin-based molecular container capped with a calix[4]arene, and its rigid cavity distinguished the slight structural differences in the aromatic guests.  相似文献   

11.
In the title compound, [RhI(C44H28N4)(C5H5N)]·C7H8, the porphyrin ring experiences significant distortion from planarity (a saddle conformation with a superimposed ruffling), as a result of steric interactions with the 2,6‐H atoms of the axial pyridine ligand. This also leads to a slight lengthening of the Rh–pyridine bond [Rh—N 2.102 (7) Å] relative to those seen in other pyridine adducts of six‐coordinate RhIII. The metric parameters of the porphyrin core are comparable with those of related metalloporphyrin derivatives. No significant intermolecular interactions are observed between the metalloporphyrin and disordered solvate species.  相似文献   

12.
This study describes the modulation of tunneling probabilities in molecular junctions by switching one of two parallel intramolecular pathways. A linearly conjugated molecular wire provides a rigid framework that allows a second, cross‐conjugated pathway to be effectively switched on and off by protonation, affecting the total conductance of the junction. This approach works because a traversing electron interacts with the entire quantum‐mechanical circuit simultaneously; Kirchhoff's rules do not apply. We confirm this concept by comparing the conductances of a series of compounds with single or parallel pathways in large‐area junctions using EGaIn contacts and single‐molecule break junctions using gold contacts. We affect switching selectively in one of two parallel pathways by converting a cross‐conjugated carbonyl carbon into a trivalent carbocation, which replaces destructive quantum interference with a symmetrical resonance, causing an increase in transmission in the bias window.  相似文献   

13.
Abstract

A series of new ‘inclusion’ materials based on tetra-4-methoxyphenyl, tetra-4-hydroxyphenyl and tetra-4-chlorophenyl derivatives of the metalloporphyrin system, in combination with a wide variety of guest molecules and ligands, have been prepared, and their structural systematics analysed. Crystallographic investigations have confirmed that the supramolecular arrangement of the hydroxyphenylporphyrin species is dominated by interporphyrin directional hydrogen-bonding interactions, and consists of continuous networks of strongly coordinated entities with varying degrees of cross-linking and rigidity. Guest molecules can be absorbed in these solids in distinctly defined sites of the lattice: in the small interhost cages of fixed size between adjacent intercoordinated porphyrin hosts, or in extended one-dimensional channels formed between the hydrogen bonded host arrays running parallel or perpendicular to the porphyrin plane. For polar ligands with strong nucleophiles, their potential coordination to the metal center provides an additional recognition factor. The stacking mode (offset geometry or overlapping) of the host metalloporphyrin arrays is also affected by the nature of the incorporated guest/ligand. Materials based on the chloro-substituted porphyrins were found to form similarly networked structural modes, influenced by the molecular shape as well as by halogen-halogen noncovalent interactions. Formation of a polar tubular intermolecular architecture capable of aligning organic dipolar guest molecule in the crystal bulk has also been demonstrated. The methoxy-substituted materials form clathrate-type structures characterized by dense layered arrangement of the porphyrin building blocks in two-dimensions. The various structural features directing the observed modes of the supramolecular architecture, and affecting the host structure as well as the guest mobility in it, are discussed.  相似文献   

14.
Zinc porphyrin dimer (1) has been designed and synthesized as a novel host of N-containing ligands. The assembly behavior and photophysical changes of its host-guest complexes were evaluated by IH NMR, fluorescence, and UV-visible titrations, and the processes reveal that the host-guest assembly first creates a stable sandwich complex, then an axial coordination equilibrium appears between the sandwich complex and free ligand. The changes of absorption spectra of the assembly processes rely on the stabilities of the complexes, and fluorescence quenching depends on the axial coordination equilibrium, which indicates that the axial ligation/de-ligation dynamics is indeed a pathway from the excited state to the ground state for metalloporphyrin complexes.  相似文献   

15.
The isolation and structural characterisation of three isomeric silver(I) complexes, 1a, 1b and 2 with the general formula {[AgL(1)]ClO(4)}(n) (where L(1) is a bis(bidentate) N,N-donor ligand derived from the Schiff-base condensation of α,α'-diamino-p-xylene and pyridine-2-carboxaldehyde) are discussed. Single-crystal X-ray structures reveal the polymeric nature for the complexes where all the silver ions are in pseudotetrahedral geometry with the AgN(4) coordination environment. Isomers 1a (Pc space group) and 1b (Cc space group) were crystallised from acetonitrile whereas 2 (C2/c space group) was crystallised during the synthesis from a solvent mixture of dicholormethane and methanol. The flexible ligand (L(1)) adopts only an anti conformation in 1b and the presence of two different anti conformations in the repeating unit results in the formation of a trapezoidal wave polymeric chain. However, both gauche and anti conformations of the ligand are found to be present in the polymeric chains of 1a. In the polymeric chain of 2, only one anti isomer of the ligand is present in the repeating unit resulting in a triangular wave chain. The structure of isomer 1a is solvent induced and solvent plays a major role in the crystal packing of this isomer. One-dimensional coordination polymers 1a, 1b and 2 are related to each other as conformational supramolecular isomers. Additionally, two independent polymeric chains parallel to each other: one triangular wave consisting of only an anti conformation and a trapezoidal wave chain consisting of alternate gauche and anti conformations of the ligand are observed in 1a. This is a rare example of two supramolecular isomers present in the same crystal. Six different conformers of the flexible ligand are observed in the crystals of coordination polymers.  相似文献   

16.
Cycloisomerization of 1,6-enynes to five- or six-membered ring systems is successfully carried out in the presence of a cationic manganese(III) catalyst. The use of a structurally rigid tetradentate porphyrin as the equatorial ligand and a weakly coordinating axial ligand is the key to bringing out the catalytic reactivity of manganese for the reaction. The axial ligand of the catalyst has a marked effect on the product and selectively aids the formation of five- or six-membered cyclic products.  相似文献   

17.
Pyridine-2-carboxylic acid, pyridine-2,3-dicarboxylic acid, and pyridine-2,4-dicarboxylic acid or their [(Ph(3)P)(2)N](+) salts react with the triply bonded dirhenium(II) complex Re(2)Cl(4)(mu-dppm)(2) (dppm = Ph(2)PCH(2)PPh(2)) in refluxing ethanol to afford unsymmetrical substitution products of the type Re(2)(eta(2)-N,O)Cl(3)(mu-dppm)(2), where N,O represents a chelating pyridine-2-carboxylate ligand (N,O = O(2)C-2-C(5)H(4)N (1), O(2)C-2-C(5)H(3)N(-3-CO(2)Et) (3), or O(2)C-2-C(5)H(3)N(-4-CO(2)H) (4)). The carboxylate groups in the 3- and 4- positions are not bound to the metal centers; in the case of 3 this group undergoes esterification in the refluxing ethanol solvent. Structure determinations have shown that 1, 3, and 4 possess similar structures in which there is an axial Re-O (carboxylate) bond (collinear with the Re(triple bond)Re bond) and the mu-dppm ligands are bound in a trans,cis fashion to the two Re atoms which have the ligand atom arrangement [P(2)NOClReReCl(2)P(2)]. The tridentate dianionic pyridine-2,6-dicarboxylate ligand (dipic) reacts with Re(2)Cl(4)(mu-dppm)(2) in ethanol at room temperature to give a compound Re(2)(dipic)Cl(2)(mu-dppm)(2) (6) in which the dipic ligand is bound in a symmetrical eta(3)-(O,N,O) fashion to one Re atom, with the N atom in an axial position (collinear with the Re(triple bond)Re bond) and with preservation of the same trans,trans coordination of the mu-dppm ligands that is present in Re(2)Cl(4)(mu-dppm)(2). Under reflux conditions, this kinetic product isomerizes to the thermodynamically favored isomer 5 with an unsymmetrical structure in which the dipic ligand chelates to one Re atom (as in 1, 3, and 4) and uses its other carboxylate group to bridge to the second Re atom. The isomerization of 6 to 5, which also results in a change in the coordination of the pair of mu-dppm ligand to trans,cis, is believed to occur by a partial "merry-go-round" process, a mechanism that probably explains the structures of the thermodynamic products 1, 3, and 4. The reaction of Re(2)Cl(4)(mu-dppm)(2) with pyridine-3-carboxylate gives the trans isomer of Re(2)(mu:eta(2)-O(2)C-3-C(5)H(4)N)(2)Cl(2)(mu-dppm)(2) (2) in which a pair of carboxylate bridges are present and the pyridine N atom is not coordinated. Single-crystal X-ray structural details are reported for 1-6.  相似文献   

18.
19.
Distortional isomers, or bond‐stretch isomers, differ only in the length of one or more bonds, which is due to crystallographic disorder in most cases. The term distortional isomerism is introduced to describe the structures of polyrotaxane 2D coordination polymers (CPs) that differ only by the relative positions in the neighboring entangled axles. A large ring and a long spacer ligand in 2D CPs yielded four different supramolecular isomers, of which two have an entangled polyrotaxane structure. One pair of C?C bonds in the spacer ligand is well‐aligned in one isomer and undergoes [2+2] cycloaddition reaction, whereas the other isomer is photoinert. They also have different sensing efficiency for several aromatic nitro compounds. However, both isomers show selective PL quenching for the Brady’s reagent. Structurally similar supramolecular isomers with different photochemical reactivity and sensing abilities appear to be unprecedented.  相似文献   

20.
Two remarkable crystal structures are reported of a cyclic receptor 1, containing two metalloporphyrin units. The overall crystal structure of 1 provides the first direct evidence that pi-stacking between two metalloporphyrins reduces the Lewis acidity of the metal ion and thereby dramatically reduces the affinity of zinc for external ligands; this effect was previously suggested indirectly by solution state binding studies. In addition, crystallising 1 from a different combination of solvents and the ability of 1 to distort its structure leads to the remarkable observation of a supramolecular dimer of inter-penetrating macrocycles, 4, held together by clusters of hydrogen-bonded methanol molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号