首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a robust protocol based on iterations of free energy perturbation (FEP) calculations, chemical synthesis, biophysical mapping and X‐ray crystallography to reveal the binding mode of an antagonist series to the A2A adenosine receptor (AR). Eight A2AAR binding site mutations from biophysical mapping experiments were initially analyzed with sidechain FEP simulations, performed on alternate binding modes. The results distinctively supported one binding mode, which was subsequently used to design new chromone derivatives. Their affinities for the A2AAR were experimentally determined and investigated through a cycle of ligand‐FEP calculations, validating the binding orientation of the different chemical substituents proposed. Subsequent X‐ray crystallography of the A2AAR with a low and a high affinity chromone derivative confirmed the predicted binding orientation. The new molecules and structures here reported were driven by free energy calculations, and provide new insights on antagonist binding to the A2AAR, an emerging target in immuno‐oncology.  相似文献   

2.
Blockade of the adenosine A2B receptor (A2BAR) represents a potential novel strategy for the immunotherapy of cancer. In the present study, we designed, synthesized, and characterized irreversible A2BAR antagonists based on an 8-p-sulfophenylxanthine scaffold. Irreversible binding was confirmed in radioligand binding and bioluminescence resonance energy transfer(BRET)-based Gα15 protein activation assays by performing ligand wash-out and kinetic experiments. p-(1-Propylxanthin-8-yl)benzene sulfonyl fluoride (6a, PSB-21500) was the most potent and selective irreversible A2BAR antagonist of the present series with an apparent Ki value of 10.6 nM at the human A2BAR and >38-fold selectivity versus the other AR subtypes. The corresponding 3-cyclopropyl-substituted xanthine derivative 6c (PSB-21502) was similarly potent, but was non-selective versus A1- and A2AARs. Attachment of a reactive sulfonyl fluoride group to an elongated xanthine 8-substituent (12, Ki 7.37 nM) resulted in a potent, selective, reversibly binding antagonist. Based on previous docking studies, the lysine residue K2697.32 was proposed to react with the covalent antagonists. However, the mutant K269L behaved similarly to the wildtype A2BAR, indicating that 6a and related irreversible A2BAR antagonists do not interact with K2697.32. The new irreversible A2BAR antagonists will be useful tools and have the potential to be further developed as therapeutic drugs.  相似文献   

3.
FLAP fingerprints are applied in the ligand-, structure- and pharmacophore-based mode in a case study on antagonists of all four adenosine receptor (AR) subtypes. Structurally diverse antagonist collections with respect to the different ARs were constructed by including binding data to human species only. FLAP models well discriminate ??active?? (=highly potent) from ??inactive?? (=weakly potent) AR antagonists, as indicated by enrichment curves, numbers of false positives, and AUC values. For all FLAP modes, model predictivity slightly decreases as follows: A2BR?>?A2AR?>?A3R?>?A1R antagonists. General performance of FLAP modes in this study is: ligand-?>?structure-?>?pharmacophore- based mode. We also compared the FLAP performance with other common ligand- and structure-based fingerprints. Concerning the ligand-based mode, FLAP model performance is superior to ECFP4 and ROCS for all AR subtypes. Although focusing on the early first part of the A2A, A2B and A3 enrichment curves, ECFP4 and ROCS still retain a satisfactory retrieval of actives. FLAP is also superior when comparing the structure-based mode with PLANTS and GOLD. In this study we applied for the first time the novel FLAPPharm tool for pharmacophore generation. Pharmacophore hypotheses, generated with this tool, convincingly match with formerly published data. Finally, we could demonstrate the capability of FLAP models to uncover selectivity aspects although single AR subtype models were not trained for this purpose.  相似文献   

4.
The adenosine A2A receptor (A2AAR) is a class A G-protein-coupled receptor (GPCR). It is an immune checkpoint in the tumor micro-environment and has become an emerging target for cancer treatment. In this study, we aimed to explore the effects of cancer-patient-derived A2AAR mutations on ligand binding and receptor functions. The wild-type A2AAR and 15 mutants identified by Genomic Data Commons (GDC) in human cancers were expressed in HEK293T cells. Firstly, we found that the binding affinity for agonist NECA was decreased in six mutants but increased for the V275A mutant. Mutations A165V and A265V decreased the binding affinity for antagonist ZM241385. Secondly, we found that the potency of NECA (EC50) in an impedance-based cell-morphology assay was mostly correlated with the binding affinity for the different mutants. Moreover, S132L and H278N were found to shift the A2AAR towards the inactive state. Importantly, we found that ZM241385 could not inhibit the activation of V275A and P285L stimulated by NECA. Taken together, the cancer-associated mutations of A2AAR modulated ligand binding and receptor functions. This study provides fundamental insights into the structure–activity relationship of the A2AAR and provides insights for A2AAR-related personalized treatment in cancer.  相似文献   

5.
Abstract

X-ray crystallography, quantum-chemical calculations and conformational analysis have been employed to study chlorophenyl(piperazinylalkyl)phthalimides, potential ligands of 5-HT1A receptor. The molecular recognition of investigated compounds by 5-HT1Aserotonin receptor has been estimated according to their ability to inhibit the [3H8]-DPAT binding. The model for 5-HT1A pharmacophore has been proposed based on crystal structures of N-(aryl)piperazinyl — alkylphthalimides.  相似文献   

6.
An iterative, computer-assisted, drug design strategy that combines molecular design, molecular mechanics, molecular dynamics (MD), and free energy perturbation (FEP) calculations with compound synthesis, biochemical testing of inhibitors, and crystallographic structure determination of protein-inhibitor complexes was successfully used to predict the rank order of a series of nucleoside monophosphate analogues as fructose 1,6-bisphosphatase (FBPase) inhibitors. The X-ray structure of FBPase complexed with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl 5'-monophosphate (ZMP) provided structural information used for subsequent analogue design and free energy calculations. The FEP protocol was validated by calculating the free energy differences for the mutation of ZMP (1) to AMP (2). The calculated results showed a net gain of 1.7 kcal/mol, which agreed with the experimental result of 1.3 kcal/mol. FEP calculations were performed for 18 other AMP analogues. Inhibition constants were determined for over half of these analogues, usually after completion of the calculation, and were consistent with the predictions. Solvation free energy differences between AMP and various AMP analogues proved to be an important factor in binding free energies, suggesting that increased desolvation costs associated with the addition of polar groups to an inhibitor must be overcome by stronger ligand-protein interactions if the structural modification is to enhance inhibitor potency. The results indicate that FEP calculations predict relative binding affinities with high accuracy and provide valuable insight into the factors that influence inhibitor binding and therefore should greatly aid efforts to optimize initial lead compounds and reduce the time required for the discovery of new drug candidates.  相似文献   

7.
Despite its central role in structure based drug design the determination of the binding mode (position, orientation and conformation in addition to protonation and tautomeric states) of small heteromolecular ligands in protein:ligand complexes based on medium resolution X-ray diffraction data is highly challenging. In this perspective we demonstrate how a combination of molecular dynamics simulations and free energy (FE) calculations can be used to correct and identify thermodynamically stable binding modes of ligands in X-ray crystal complexes. The consequences of inappropriate ligand structure, force field and the absence of electrostatics during X-ray refinement are highlighted. The implications of such uncertainties and errors for the validation of virtual screening and fragment-based drug design based on high throughput X-ray crystallography are discussed with possible solutions and guidelines.  相似文献   

8.
Abstract

Discrimination of chiral amines by dimethyldiketopyridino-18-crown-6 (1) is studied by free energy peturbation (FEP) and molecular dynamics (MD) methods. 1 has two (S)-chiral centers and discriminates chiral amines through host-guest interactions. The optically active amines in this study are α-(1-naphthyl)ethylamine, methylbenzylamine, cyclohexylethylamine, and sec-butylamine. The trends in binding free energy differences obtained from FEP calculations were in excellent agreement with experimental results obtained in the gas phase. In order to explain the enantioselectivity of the host in terms of the host-guest interactions at the molecular level, we analyzed the structures generated by 10-ns MD simulations of host-guest complexes. The suggested chiral discrimination mechanism, the π-π interaction and the steric repulsion between the guest and the host, was verified by our MD simulation analysis.  相似文献   

9.
10.
Standard molecular mechanics (MM) force fields predict a nearly linear decrease in hydration free energy with each successive addition of a methyl group to ammonia or acetamide, whereas a nonadditive relationship is observed experimentally. In contrast, the non-additive hydration behavior is reproduced directly using a quantum mechanics (QM)/MM-based free-energy perturbation (FEP) method wherein the solute partial atomic charges are updated at every window. Decomposing the free energies into electrostatic and van der Waals contributions and comparing the results with the corresponding free energies obtained using a conventional FEP method and a QM/MM method wherein the charges are not updated suggests that inaccuracies in the electrostatic free energies are the primary reason for the inability of the conventional FEP method to predict the experimental findings. The QM/MM-based FEP method was subsequently used to evaluate inhibitors of the diabetes drug target fructose-1,6-bisphosphatase adenosine 5'-monophosphate and 6-methylamino purine riboside 5'-monophosphate. The predicted relative binding free energy was consistent with the experimental findings, whereas the relative binding free energy predicted using the conventional FEP method differed from the experimental finding by an amount consistent with the overestimated relative solvation free energies calculated for alkylamines. Accordingly, the QM/MM-based FEP method offers potential advantages over conventional FEP methods, including greater accuracy and reduced user input. Moreover, since drug candidates often contain either functionality that is inadequately treated by MM (e.g., simple alkylamines and alkylamides) or new molecular scaffolds that require time-consuming development of MM parameters, these advantages could enable future automation of FEP calculations as well as greatly increase the use and impact of FEP calculations in drug discovery.  相似文献   

11.
Alchemical free energy calculations play a very important role in the field of molecular modeling. Efforts have been made to improve the accuracy and precision of those calculations. One of the efforts is to employ a Hamiltonian replica exchange molecular dynamics (H-REMD) method to enhance conformational sampling. In this paper, we demonstrated that HREMD method not only improves convergence in alchemical free energy calculations but also can be used to compute free energy differences directly via the Free Energy Perturbation (FEP)algorithm. We show a direct mapping between the H-REMD and the usual FEP equations, which are then used directly to compute free energies. The H-REMD alchemical free energy calculation (Replica exchange Free Energy Perturbation, REFEP) was tested on predicting the pK(a) value of the buried Asp26 in thioredoxin. We compare the results of REFEP with TI and regular FEP simulations. REFEP calculations converged faster than those from TI and regular FEP simulations. The final predicted pK(a) value from the H-REMD simulation was also very accurate, only 0.4 pK(a) unit above the experimental value. Utilizing the REFEP algorithm significantly improves conformational sampling, and this in turn improves the convergence of alchemical free energy simulations.  相似文献   

12.
In this work, we present a case study to explore the challenges associated with finding novel molecules for a receptor that has been studied in depth and has a wealth of chemical information available. Specifically, we apply a previously described protocol that incorporates explicit water molecules in the ligand binding site to prospectively screen over 2.5 million drug-like and lead-like compounds from the commercially available eMolecules database in search of novel binders to the adenosine A2A receptor (A2AAR). A total of seventy-one compounds were selected for purchase and biochemical assaying based on high ligand efficiency and high novelty (Tanimoto coefficient ≤0.25 to any A2AAR tested compound). These molecules were then tested for their affinity to the adenosine A2A receptor in a radioligand binding assay. We identified two hits that fulfilled the criterion of ~50 % radioligand displacement at a concentration of 10 μM. Next we selected an additional eight novel molecules that were predicted to make a bidentate interaction with Asn2536.55, a key interacting residue in the binding pocket of the A2AAR. None of these eight molecules were found to be active. Based on these results we discuss the advantages of structure-based methods and the challenges associated with finding chemically novel molecules for well-explored targets.  相似文献   

13.
Docking calculations that allow the estimation of the binding energy of small ligands in the GIIA sPLA2 active site were used in a structure-based design protocol. Four GIIA sPLA2 inhibitors co-crystallised with the enzyme, were used for examining the enzyme active site and for testing the FlexX in SYBYL 6.8 molecular docking program to reproduce the crystallographic experimental data. The FPL67047XX inhibitor was chosen as a prototype structure for applying free energy perturbation (FEP) studies. Structural modifications of the initial structure of the FPL67047XX inhibitor (IC50 0.013 μM) were performed in an effort to optimise the interactions in the GIIA sPLA2 active site. The structural modifications were based on: (1) the exploration of absolute configuration (i.e. comparison of the binding score of (R)- and (S)-enantiomers); (2) bioisosterism (i.e. replacement of the carboxylate group with the bioisosteric sulphonate and phosphonate groups); (3) insertion of substituents that fit better in the active site. The generated new structures exhibited higher binding energy. Such structures may spark off the interest of medicinal chemists for synthesizing potentially more active GIIA sPLA2 inhibitors.  相似文献   

14.
The structural poses of ligands that bind weakly to protein receptors are challenging to define. In this work we have studied ligand interactions with the adrenoreceptor (AR) subtypes, α1A-AR and α1B-AR, which belong to the G protein-coupled receptor (GPCR) superfamily, by employing the solution-based ligand-observed NMR method interligand NOEs for pharmacophore mapping (INPHARMA). A lack of receptor crystal structures and of subtype-selective drugs has hindered the definition of the physiological roles of each subtype and limited drug development. We determined the binding pose of the weakly binding α1A-AR-selective agonist A-61603 relative to an endogenous agonist, epinephrine, at both α1A-AR and α1B-AR. The NMR experimental data were quantitatively compared, by using SpINPHARMA, to the back-calculated spectra based on ligand poses obtained from all-atom molecular dynamics simulations. The results helped mechanistically explain the selectivity of (R)-A-61603 towards α1A-AR, thus demonstrating an approach for targeting subtype selectivity in ARs.  相似文献   

15.
The anions binding properties of the pyrrole-based tripodal anion receptor 1 were studied by X-ray crystallography, 1H NMR, and ESI-MS. It revealed that this new tripodal receptor has a preference for binding H2PO4 and F ions.  相似文献   

16.
Computer-aided drug design has become an integral part of drug discovery and development in the pharmaceutical and biotechnology industry, and is nowadays extensively used in the lead identification and lead optimization phases. The drug design data resource (D3R) organizes challenges against blinded experimental data to prospectively test computational methodologies as an opportunity for improved methods and algorithms to emerge. We participated in Grand Challenge 2 to predict the crystallographic poses of 36 Farnesoid X Receptor (FXR)-bound ligands and the relative binding affinities for two designated subsets of 18 and 15 FXR-bound ligands. Here, we present our methodology for pose and affinity predictions and its evaluation after the release of the experimental data. For predicting the crystallographic poses, we used docking and physics-based pose prediction methods guided by the binding poses of native ligands. For FXR ligands with known chemotypes in the PDB, we accurately predicted their binding modes, while for those with unknown chemotypes the predictions were more challenging. Our group ranked #1st (based on the median RMSD) out of 46 groups, which submitted complete entries for the binding pose prediction challenge. For the relative binding affinity prediction challenge, we performed free energy perturbation (FEP) calculations coupled with molecular dynamics (MD) simulations. FEP/MD calculations displayed a high success rate in identifying compounds with better or worse binding affinity than the reference (parent) compound. Our studies suggest that when ligands with chemical precedent are available in the literature, binding pose predictions using docking and physics-based methods are reliable; however, predictions are challenging for ligands with completely unknown chemotypes. We also show that FEP/MD calculations hold predictive value and can nowadays be used in a high throughput mode in a lead optimization project provided that crystal structures of sufficiently high quality are available.  相似文献   

17.
G-protein-coupled-receptors (GPCRs) are of fundamental importance for signal transduction through cell membranes. This makes them important drug targets, but structure-based drug design (SBDD) is still hampered by the limitations for structure determination of unmodified GPCRs. We show that the interligand NOEs for pharmacophore mapping (INPHARMA) method can provide valuable information on ligand poses inside the binding site of the unmodified human A2A adenosine receptor reconstituted in nanodiscs. By comparing experimental INPHARMA spectra with back-calculated spectra based on ligand poses obtained from molecular dynamics simulations, a complex structure for A2AR with the low-affinity ligand 3-pyrrolidin-1-ylquinoxalin-2-amine was determined based on the X-ray structure of ligand ZM-241,358 in complex with a modified A2AR.  相似文献   

18.
Calculation of protein-ligand binding affinities continues to be a hotbed of research. Although many techniques for computing protein-ligand binding affinities have been introduced--ranging from computationally very expensive approaches, such as free energy perturbation (FEP) theory; to more approximate techniques, such as empirically derived scoring functions, which, although computationally efficient, lack a clear theoretical basis--there remains pressing need for more robust approaches. A recently introduced technique, the displaced-solvent functional (DSF) method, was developed to bridge the gap between the high accuracy of FEP and the computational efficiency of empirically derived scoring functions. In order to develop a set of reference data to test the DSF theory for calculating absolute protein-ligand binding affinities, we have pursued FEP theory calculations of the binding free energies of a methane ligand with 13 different model hydrophobic enclosures of varying hydrophobicity. The binding free energies of the methane ligand with the various hydrophobic enclosures were then recomputed by DSF theory and compared with the FEP reference data. We find that the DSF theory, which relies on no empirically tuned parameters, shows excellent quantitative agreement with the FEP. We also explored the ability of buried solvent accessible surface area and buried molecular surface area models to describe the relevant physics, and find the buried molecular surface area model to offer superior performance over this dataset.  相似文献   

19.
Molecular dynamics (MD) simulations for Zif268 (a zinc‐finger‐protein binding specifically to the GC‐rich DNA)‐d(A1G2C3G4T5G6G7G8C9A10C11)2 and TATAZF (a zinc‐finger‐protein recognizing the AT‐rich DNA)‐d(A1C2G3C4T5A6T7A8A9A10A11G12G13)2 complexes have been performed for investigating the DNA binding affinities and specific recognitions of zinc fingers to GC‐rich and AT‐rich DNA sequences. The binding free energies for the two systems have been further analyzed by using the molecular mechanics Poisson‐Boltzmann surface area (MM‐PBSA) method. The calculations of the binding free energies reveal that the affinity energy of Zif268‐DNA complex is larger than that of TATAZF‐DNA one. The affinity between the zinc‐finger‐protein and DNA is mainly driven by more favorable van‐der‐Waals and nonpolar/solvation interactions in both complexes. However, the affinity energy difference of the two binding systems is mainly caused by the difference of van‐der‐Waals interactions and entropy components. The decomposition analysis of MM‐PBSA free energies on each residue of the proteins predicts that the interactions between the residues with the positive charges and DNA favor the binding process; while the interactions between the residues with the negative charges and DNA behave in the opposite way. The interhydrogen‐bonds at the protein‐DNA interface and the induced intrafinger hydrogen bonds between the residues of protein for the Zif268‐DNA complex have been identified at some key contact sites. However, only the interhydrogen‐bonds between the residues of protein and DNA for TATAZF‐DNA complex have been found. The interactions of hydrogen‐bonds, electrostatistics and van‐der‐Waals type at some new contact sites have been identified. Moreover, the recognition characteristics of the two studied zinc‐finger‐proteins have also been discussed. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号