首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present a laser frequency locking to Rydberg transition with electromagnetically induced transparency(EIT)spectra in a room-temperature cesium vapor cell. Cesium levels 6S_(1/2), 6P_(3/2), and the n D_(5/2) state, compose a cascade three-level system, where a coupling laser drives Rydberg transition, and probe laser detects the EIT signal. The error signal, obtained by demodulating the EIT signal, is used to lock the coupling laser frequency to Rydberg transition. The laser frequency fluctuation, ~0.7 MHz, is obtained after locking on, with the minimum Allan variance to be 8.9 × 10~(-11).This kind of locking method can be used to stabilize the laser frequency to the excited transition.  相似文献   

2.
We propose a simplified technique for dual wavelength operation of an extended cavity semiconductor laser, and its characterization using electromagnetically induced transparency (EIT). In this laser cavity scheme light beam is made converging before it incidences on the cavity grating. The converging angle of the beam creates two longitudinal oscillating modes of resonating cavity. Frequency separation between the longitudinal modes are measured with the help of beat frequency generation in a photodiode and creating pair of EIT spectra in Rb vapor. The pair of EIT dips that are generated due to dual wavelength of this laser (that is used as control laser) can be used to estimate frequency difference between the generated wavelengths. Width of EIT spectra can be used to estimate linewidth of individual wavelength components.  相似文献   

3.
The optical response of an atomic vapor can be coherently manipulated by tunable quantum interference occurring in atomic transition processes. A periodic layered medium whose unit cells consist of a dielectric and an EIT (electromagnetically induced transparency) atomic vapor is designed for light propagation manipulation. Such an EIT‐based periodic layered medium exhibits a flexible frequency‐sensitive optical response, where a very small change in probe frequency can lead to a drastic variation of reflectance and transmittance. As the destructive quantum interference relevant to two‐photon resonance arises in EIT atoms interacting with both control and probe fields, the controllable optical processes that depend sensitively on the external control field will take place in this EIT‐based periodic layered medium. Such a frequency‐sensitive and field‐controlled optical behavior of reflection and transmission in the EIT photonic crystal can be applicable to designs of new devices such as photonic switches, photonic logic gates and photonic transistors, where one laser field can be controlled by the other one, and would have potential applications in the areas of integrated optical circuits and other related techniques (e.g., all‐optical instrumentations).  相似文献   

4.
杨智伟  焦月春  韩小萱  赵建明  贾锁堂 《物理学报》2016,65(10):103201-103201
本文主要研究了调制探测激光场中铯Rydberg 原子阶梯型三能级系统的电磁感应透明(EIT) 效应. 铯原子基态6S1/2, 第一激发态6P3/2 和Rydberg 态形成阶梯型三能级系统, 探测光作用于6S1/2 (F = 4)→6P3/2(F' = 5) 的跃迁, 耦合光在Rydberg 跃迁线6P3/2→49S1/2 附近扫描, 形成Rydberg 原子EIT. 当对探测光频率施加一个几kHz 的调制时, 调制解调后的EIT 信号分裂为两个峰, 双峰间距与调制频率无关,而与调制幅度导致的失谐量大小(频率调制幅度) 成正比, 双峰间隔的一半等于探测光频率调制幅度的λpc = 1.67 倍. 实验结果与理论计算相一致. 本文的研究结果可应用于激光线型和频率抖动的实时监测.  相似文献   

5.
We report the experimental observations of double EIT and enhanced EIT signal in a combination of Λ- and V-type multi-level system of the D2 transition of 85Rb atoms interacting with three laser fields. The EIT formation under a Λ-type and V-type systems is also observed separately. It is found that the EIT width in a V-type system becomes narrower than the Λ-type system. Also the effect of frequency detuning of the control laser on the probe absorption profile is studied in presence of Λ- and V-type EIT systems.  相似文献   

6.
裴栋梁  何军  王杰英  王家超  王军民 《物理学报》2017,66(19):193701-193701
里德伯态光谱是测量里德伯态能级结构和中性原子间相互作用的常用技术手段,特别是高精度的里德伯光谱,可以测量室温原子气室中由偶极相互作用等导致的原子能级频移.在实验中利用反向的852 nm激光和509 nm激光实现了室温原子气室中铯原子6S_(1/2)—6P_(3/2)—57S(D)跃迁的级联双光子激发,实现了里德伯态原子的制备.基于阶梯型电磁诱导透明获得了铯原子里德伯态的高分辨光谱.实验中,基于速度选择的射频边带调制技术,对光谱信号进行了频率标定,测量了铯原子里德伯态57D_(3/2)和57D_(5/2)的精细分裂,分裂间隔为(354.7±2.5)MHz,与理论计算结果基本一致.速度选择的射频调制光谱可以实现里德伯态原子的能级分裂测量,其测量精度对于单光子跃迁的绝对激光频率不敏感;实验中影响57D_(3/2)和57D_(5/2)精细分裂间隔测量精度的主要因素是功率加宽导致的电磁感应透明信号的展宽和509 nm激光频率扫描的非线性.  相似文献   

7.
李敬奎  杨文广  宋振飞  张好  张临杰  赵建明  贾锁堂 《物理学报》2015,64(16):163201-163201
在室温铯原子蒸气池中, 由铯原子基态、激发态和里德堡态构建了阶梯型三能级系统, 研究了里德堡原子阶梯型三能级系统的电磁感应透明(EIT). 在实现电磁感应透明的基础上, 利用16.9 GHz的射频电场耦合相邻的原子里德堡态, 实现49S1/2→47D3/2的双光子跃迁, 测量了里德堡原子的射频双光子光谱, 观察到了电磁感应透明光谱的分裂, 进一步研究了电场强度对射频双光子光谱的影响. 利用里德堡原子的EIT效应可实现对射频电场幅值和极化的精密测量, 具有潜在的应用前景.  相似文献   

8.
杨智伟  焦月春  韩小萱  赵建明  贾锁堂 《物理学报》2017,66(9):93202-093202
在铯原子室温蒸气池中研究了弱射频场中Rydberg原子阶梯型三能级系统的电磁感应透明(EIT)效应.铯原子基态6S_(1/2)、第一激发态6P_(3/2)和Rydberg 48D_(5/2)态形成阶梯型三能级系统,探测光共振作用于6S_(1/2)(F=4)→6P_(3/2)(F′=5)的跃迁,耦合光在Rydberg跃迁线6P_(3/2)(F′=5)→48D_(5/2)附近扫描,形成Rydberg原子EIT.当对铯原子施加一个80 MHz的弱射频电场时,48D_(5/2)Rydberg原子的EIT光谱发生Stark频移和分裂,同时产生由射频场调制Rydberg能级的偶数级边带,测量结果与Floquet理论模拟的结果相符合.同时,改变弱射频电场的频率研究了铯Rydberg能级的自电离效应对Rydberg原子Stark谱的影响,据此,我们提出将电极板置于铯原子蒸气池内的方案以减少自电离效应的影响.在弱射频Stark谱中,mj=5/2的Stark谱与mj=1/2,3/2的二级边带形成多个能级交叉,这些能级交叉点提供了一种基于原子的精确校准射频电场的新方法.  相似文献   

9.
We here present a comparative study of frequency stabilities of pump and probe lasers coupled at a frequency offset generated by coherent photon-atom interaction. Pump-probe spectroscopy of the Λ configuration in D2 transition of cesium is carried out to obtain sub-natural (∼2 MHz) electromagnetically induced transparency (EIT) and sub-Doppler (∼10 MHz) Autler-Townes (AT) resonance. The pump laser is locked on the saturated absorption spectrum (SAS, ∼13 MHz) and the probe laser is successively stabilized on EIT and AT signals. Frequency stabilities of pump and probe lasers are calculated in terms of Allan variance σ(2,τ) by using the frequency noise power spectrum. It is found that the frequency stability of the probe stabilized on EIT is superior (σ∼2×10−13) to that of SAS locked pump laser (σ∼10−12), whereas the performance of the AT stabilized laser is inferior (σ∼6×10−12). This contrasting behavior is discussed in terms of the theme of conventional master-slave offset locking scheme and the mechanisms underlying the EIT and sub-Doppler AT resonances in a Doppler broadened atomic medium.  相似文献   

10.
We investigate modulation transfer through pump induced atomic coherence in pump-probe spectroscopy of Doppler broadened medium of cesium atoms. The mechanism of modulation transfer is discussed for a three level Λ configuration under slow frequency modulation. Modulation transfer is demonstrated by performing frequency modulation spectroscopy (FMS) on a sub-natural linewidth (<2 MHz) electromagnetically induced transparency (EIT) signal. Here the pump laser is modulated by acousto-optic frequency modulation and the modulation is transferred to the probe laser through atomic coherence. Finally the probe laser is locked on the first derivative spectrum of EIT signal. Such atomic frequency offset locking system totally removes the necessity of direct modulation of laser frequency, so that the spectral resolution is limited only by the practical linewidth of the laser systems. Moreover it provides a novel way to eliminate the additional frequency and intensity noise associated with direct frequency dithering, which may limit the experimental resolution.  相似文献   

11.
We study electromagnetically-induced transparency (EIT) of a probe field in a Doppler- broadened five-level K-type atomic system driven by three strong laser (coupling) fields. Effect of wave-vector mismatch occurring when the coupling field frequency is higher than that of the probe field frequency (λ c < λ p) are considered. Under the influence of the coherent coupling fields, the steady-state linear susceptibility of the probe laser shows that the system can have single or double or triple EIT windows depending on the amplitude and detuning of the coupling fields.  相似文献   

12.
A three-level lambda system driven by multicolor control, pump, and probe fields is investigated. The pump and probe fields are derived from the same laser with opposite propagating directions. Due to the Doppler effect, the zero group-velocity atoms face bichromatic fields, while other atoms face trichromatic fields. The atomic medium shows distinct characteristics and exhibits simultaneous electromagnetically induced transparency(EIT) and electromagnetically induced absorption(EIA) at two frequencies. EIT and EIA peaks have a fixed relationship with frequency, which is determined by the Doppler shifts.  相似文献   

13.
We present a detail analysis of the line shape of electromagnetically induced transparency (EIT) in a Doppler broadened five level atomic system based on density matrix formalism. It has been shown that the velocity averaged EIT line shape in a multilevel system is very sharp. The effect of the ground state decay rates on the EIT peak has also been investigated. The linear and non-linear variations of the EIT line width (FWHM) for different pump and probe power ratios are shown. Considering the D2 transition of 85Rb atom the dependence of EIT width and height on pump power has been experimentally measured. Simulated spectra are compared with the experimentally obtained one. The effect of buffer gas on the EIT peak has also been observed experimentally as well as theoretically.  相似文献   

14.
We develop a full quantum theory of transient-state electromagnetically induced transparency (EIT) in the vapor of three-level A-type atoms interacting with probe and coupling lasers. As applications of the full quantum theory, we show that transient-state EIT medium exhibits normal dispersion and find that group velocities of both coupling and probe lasers are greatly reduced. It is shown that the group velocity of the probe laser in the transient-state EIT case is equal to that in the adiabatic EIT case and that the coupling laser group velocity in the transient-state EIT is generally less than that in the adiabatic EIT.  相似文献   

15.
We develop a full quantum theory of transient-state electromagnetically induced transparency (EIT) in thevapor of three-level A-type atoms interacting with probe and coupling lasers. As applications of the full quantum theory,we show that transient-state EIT medium exhibits normal dispersion and find that group velocities of both coupling andprobe lasers are greatly reduced. It is shown that the group velocity of the probe laser in the transient-state EIT case isequal to that in the adiabatic EIT case and that the coupling laser group velocity in the transient-state EIT is generallyless than that in the adiabatic EIT.  相似文献   

16.
《中国物理 B》2021,30(7):74206-074206
We study the steady optical response of a square lattice in which all trapped atoms are driven by a probe and a coupling fields into the ladder configuration of electromagnetically induced transparency(EIT). It turns out to be a manybody problem in the presence of van der Waals(vd W) interaction among atoms in the upmost Rydberg state, so Monte Carlo(MC) calculation based on density matrix equations have been done after introducing a sufficiently large cut-off radius. It is found that the absorption and dispersion of EIT spectra depends critically on a few key parameters like lattice dimension, unitary vd W shift, probe Rabi frequency, and coupling detuning. Through modulating these parameters, it is viable to change symmetries of the absorption and dispersion spectra and control on demand depth and position of the transparency window. Our MC calculation is expected to be instructive in understanding many-body quantum coherence effects and in manipulating non-equilibrium quantum phenomena by utilizing vd W interactions of Rydberg atoms.  相似文献   

17.
Characterization of polycyclic aromatic hydrocarbons (PAHs) samples has been performed by laser desorption combined with multi-photon ionization technique using two different geometries of the ionization laser beam. This comparative study evidences the strong influence of ionization laser fluence on PAH fragmentation. Through a ∼103 enlargement of the ionization probe volume and 104 reduction of laser fluence over previous studies, fragment free mass spectra are obtained with higher sensitivity and selectivity. The ability to measure fragment free PAH mass spectra is a very important step in the end goal of measuring complex unknown mixtures of PAH desorbed from solid surface such as soot samples.  相似文献   

18.
Electromagnetically induced transparency (EIT) resonance in strong magnetic fields of up to 1.7 kG has been investigated with the use of a 30-??m cell filled with an atomic rubidium vapor and neon as a buffer gas. The EIT resonance in the ?? system of the D1 line of 85Rb atoms has been formed with the use of two narrowband (??1 MHz) 795-nm diode lasers. The EIT resonance in a longitudinal magnetic field is split into five components. It has been demonstrated that the frequencies of the five EIT components are either blue- or red-shifted with an increase in the magnetic field, depending on the frequency ??P of the probe laser. In has been shown that in both cases the 85Rb atoms enter the hyperfine Paschen-Back regime in magnetic fields of >1 kG. The hyperfine Paschen-Back regime is manifested by the frequency slopes of all five EIT components asymptotically approaching the same fixed value. The experiment agrees well with the theory.  相似文献   

19.
We report the experimental observation of electromagnetically induced transparency (EIT) in a Doppler broadened rubidium vapour at room temperature for different probe intensities at a fixed pump intensity in a five-level Λ-type system formed by the D2 transition of 85Rb. For a constant pump intensity, we find that the EIT width and height change with the variation of probe intensity. We observe a nonlinear variation of the height of the EIT peak and a linear variation of the width (FWHM) of the EIT signal with probe intensity. In the Doppler broadened multilevel system, we also observe the velocity selective dips along with the EIT signal. A numerical simulation of the probe response signal based on density matrix representation in a five-level system is carried out to reproduce the experimentally observed spectra.  相似文献   

20.
We observe linewidths below the natural linewidth for a probe laser on a degenerate two-level F → F′ transition, when the same transition is driven by a strong control laser. We take advantage of the fact that each level of the transition is made of multiple magnetic sublevels, and use the phenomenon of electromagnetically induced transparency (EIT) or absorption (EIA) in multilevel systems. Optical pumping by the control laser redistributes the population so that only a few sublevels contribute to the probe absorption, an explanation which is verified by a density-matrix analysis of the relevant sublevels. We observe more than a factor of 3 reduction in linewidth in the D2 line of Rb in room-temperature vapor. Such subnatural features vastly increase the scope of applications of EIT, such as high-resolution spectroscopy and tighter locking of lasers to atomic transitions, since it is not always possible to find a suitable third level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号