首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Poria cocos is an edible medicinal mushroom with the effects of inducing diuresis, excreting dampness, invigorating the spleen and tranquilizing the mind. The triterpenoids of Poria cocos as the main active ingredients have shown health benefits of the central nervous system of the human body. Accordingly, this study aimed at further understanding the antidepressant-like effect and a potential mechanism of the triterpenoids extracts from Poria cocos (TPC). As a result, the TPC significantly ameliorated depression-like behaviors on chronic unpredictable mild stress (CUMS) rats, and restored the levels of brain-derived neurotrophic factor and nerve growth factor in the hippocampus of rats. Gut microiota analysis revealed that TPC could increase the biodiversity and markedly regulate the relative abundance of [Prevotella], Allobaculum and Ochrobactrum of CUMS rats. The cecal contents metabolomics pointed to thirteen biomarkers associated with TPC antidepressant effect, which involved in primary bile acid biosynthesis, taurine and hypotaurine metabolism, arginine and proline metabolism. Correlation analysis further showed that there was a strong correlation relationship between the gut microbiota and the cecal contents metabolites, especially compounds involved in energy metabolism, inflammation and immunity. In conclusion, TPC showed a potential antidepressant effect, which was possibly mediated the gut microbiota and cecal contents metabolism.  相似文献   

2.
Pulcherriminic acid is a cyclic dipeptide found mainly in Bacillus and yeast. Due to the ability of pulcherriminic acid to chelate Fe3+ to produce reddish brown pulcherrimin, microorganisms capable of synthesizing pulcherriminic acid compete with other microorganisms for environmental iron ions to achieve bacteriostatic effects. Therefore, studying the biosynthetic pathway and their enzymatic catalysis, gene regulation in the process of synthesis of pulcherriminic acid in Bacillus can facilitate the industrial production, and promote the wide application in food, agriculture and medicine industries. After initially discussing, this review summarizes current research on the synthesis of pulcherriminic acid by Bacillus, which includes the crystallization of key enzymes, molecular catalytic mechanisms, regulation of synthetic pathways, and methods to improve efficiency in synthesizing pulcherriminic acid and its precursors. Finally, possible applications of pulcherriminic acid in the fermented food, such as Chinese Baijiu, applying combinatorial biosynthesis will be summarized.  相似文献   

3.
The biosynthetic gene cluster of the aureolic acid type antitumor drug chromomycin A3 from S. griseus subsp. griseus has been identified and characterized. It spans 43 kb and contains 36 genes involved in polyketide biosynthesis and modification, deoxysugar biosynthesis and sugar transfer, pathway regulation and resistance. The organization of the cluster clearly differs from that of the closely related mithramycin. Involvement of the cluster in chromomycin A3 biosynthesis was demonstrated by disrupting the cmmWI gene encoding a polyketide reductase involved in side chain reduction. Three novel chromomycin derivatives were obtained, named chromomycin SK, chromomycin SA, and chromomycin SDK, which show antitumor activity and differ with respect to their 3-side chains. A pathway for the biosynthesis of chromomycin A3 and its deoxysugars is proposed.  相似文献   

4.
Andrastins (andrastin A-D), produced by several Penicillium species, exhibit inhibitory activity against ras farnesyltransferase, suggesting that these compounds could be promising leads for antitumor agents. Although the genome sequence of Penicillium chrysogenum, an andrastin-producing species, is available, the genetic and molecular bases for the biosynthesis of andrastins have not been elucidated. Here we report the identification and characterization of the gene cluster for andrastin biosynthesis. We reconstituted the biosynthetic pathway in Aspergillus oryzae, a fungal expression host, by the co-expression of five genes, including that of a terpene cyclase, and of four genes encoding the tailoring enzymes, required for the generation of andrastins. Remarkably, we successfully obtained andrastin A, the most complex andrastin molecule, as the metabolite of nine gene products, thus confirming the potential of the fungal expression system to synthesize useful natural products.  相似文献   

5.
The maremycin biosynthetic gene cluster has been identified in Streptomyces sp. B9173. Comparative metabolic profiling with knockout mutant strains led to the identification of new products correlated to the maremycin biosynthesis, in particular the “demethyl”-maremycins with an unexpected D-tryptophan unit. A biosynthetic pathway for the maremycins is proposed and plausible reasoning for tryptophan epimerization in the demethylmaremycin biosynthesis is also provided.  相似文献   

6.
Carquinostatin A (CQS), a potent neuroprotective substance, is a unique carbazole alkaloid with both an ortho‐quinone function and an isoprenoid moiety. We identified the entire gene cluster responsible for CQS biosynthesis in Streptomyces exfoliatus through heterologous production of CQS and gene deletion. Biochemical characterization of seven CQS biosynthetic gene products (CqsB1–7) established the total biosynthetic pathway of CQS. Reconstitution of CqsB1 and CqsB2 showed that the synthesis of the carbazole skeleton involves CqsB1‐catalyzed decarboxylative condensation of an α‐hydroxyl‐β‐keto acid intermediate with 3‐hydroxybutyryl‐ACP followed by CqsB2‐catalyzed oxidative cyclization. Based on crystal structures and mutagenesis‐based biochemical assays, a detailed mechanism for the unique deprotonation‐initiated cyclization catalyzed by CqsB2 is proposed. Finally, analysis of the substrate specificity of the biosynthetic enzymes led to the production of novel carbazoles.  相似文献   

7.
With growing understanding of the underlying pathways of polyketide biosynthesis, along with the continual expansion of the synthetic biology toolkit, it is becoming possible to rationally engineer and fine-tune the polyketide biosynthetic machinery for production of new compounds with improved properties such as stability and/or bioactivity. However, engineering the pathway to the thiomarinol antibiotics has proved challenging. Here we report that genes from a marine Pseudoalternomonas sp. producing thiomarinol can be expressed in functional form in the biosynthesis of the clinically important antibiotic mupirocin from the soil bacterium Pseudomonas fluorescens. It is revealed that both pathways employ the same unusual mechanism of tetrahydropyran (THP) ring formation and the enzymes are cross compatible. Furthermore, the efficiency of downstream processing of 10,11-epoxy versus 10,11-alkenic metabolites are comparable. Optimisation of the fermentation conditions in an engineered strain in which production of pseudomonic acid A (with the 10,11-epoxide) is replaced by substantial titres of the more stable pseudomonic acid C (with a 10,11-alkene) pave the way for its development as a more stable antibiotic with wider applications than mupirocin.

Where the sea meets the land: the mupirocin biosynthetic gene cluster (BGC) from the terrestrial bacterium Pseudomonas fluorescens was repurposed via a plug-and-play approach with heterologous genes from the marine strain that produces thiomarinol.  相似文献   

8.
9.
10.
Intermediates of the purine biosynthesis pathway play key roles in cellular metabolism including nucleic acid synthesis and signal mediation. In addition, they are also of major interest to the biotechnological industry as several intermediates either possess flavor-enhancing characteristics or are applied in medical therapy. In this study, we have developed an analytical method for quantitation of 12 intermediates from the purine biosynthesis pathway including important nucleotides and their corresponding nucleosides and nucleobases. The approach comprised a single-step acidic extraction/quenching procedure, followed by quantitative electrospray LC-MS/MS analysis. The assay was validated in terms of accuracy, precision, reproducibility, and applicability for complex biological matrices. The method was subsequently applied for determination of free intracellular pool sizes of purine biosynthetic pathway intermediates in the two Gram-positive bacteria Corynebacterium glutamicum and Corynebacterium ammoniagenes. Importantly, no ion pair reagents were applied in this approach as usually required for liquid chromatography analysis of large classes of diverse metabolites.  相似文献   

11.
Xiamycin A (XMA) and oxiamycin (OXM) are bacterial indolosesquiterpenes featuring rare pentacyclic ring systems and are isolated from a marine-derived Streptomyces sp. SCSIO 02999. The putative biosynthetic gene cluster for XMA/OXM was identified by a partial genome sequencing approach. Eighteen genes were proposed to be involved in XMA/OXM biosynthesis, including five genes for terpene synthesis via a non-mevalonate pathway, eight genes encoding oxidoreductases, and five genes for regulation and resistance. Targeted disruptions of 13 genes within the xia gene cluster were carried out to probe their encoded functions in XMA/OXM biosynthesis. The disruption of xiaK, encoding an aromatic ring hydroxylase, led to a mutant producing indosespene and a minor amount of XMA. Feeding of indosespene to XMA/OXM nonproducing mutants revealed indosespene as a common precursor for XMA/OXM biosynthesis. Most notably, the flavin dependent oxygenase XiaI was biochemically characterized in vitro to convert indosespene to XMA, revealing an unusual oxidative cyclization strategy tailoring indolosesquiterpene biosynthesis.  相似文献   

12.
13.
The recently sequenced genomes of several Aspergillus species have revealed that these organisms have the potential to produce a surprisingly large range of natural products, many of which are currently unknown. We have found that A. nidulans produces emericellamide A, an antibiotic compound of mixed origins with polyketide and amino acid building blocks. Additionally, we describe the discovery of four previously unidentified, related compounds that we designate emericellamide C-F. Using recently developed gene targeting techniques, we have identified the genes involved in emericellamide biosynthesis. The emericellamide gene cluster contains one polyketide synthase and one nonribosomal peptide synthetase. From the sequences of the genes, we are able to deduce a biosynthetic pathway for the emericellamides. The identification of this biosynthetic pathway opens the door to engineering novel analogs of this structurally complex metabolite.  相似文献   

14.
BACKGROUND: The mitomycins are natural products that contain a variety of functional groups, including aminobenzoquinone- and aziridine-ring systems. Mitomycin C (MC) was the first recognized bioreductive alkylating agent, and has been widely used clinically for antitumor therapy. Precursor-feeding studies showed that MC is derived from 3-amino-5-hydroxybenzoic acid (AHBA), D-glucosamine, L-methionine and carbamoyl phosphate. A genetically linked AHBA biosynthetic gene and MC resistance genes were identified previously in the MC producer Streptomyces lavendulae NRRL 2564. We set out to identify other genes involved in MC biosynthesis. RESULTS: A cluster of 47 genes spanning 55 kilobases of S. lavendulae DNA governs MC biosynthesis. Fourteen of 22 disruption mutants did not express or overexpressed MC. Seven gene products probably assemble the AHBA intermediate through a variant of the shikimate pathway. The gene encoding the first presumed enzyme in AHBA biosynthesis is not, however, linked within the MC cluster. Candidate genes for mitosane nucleus formation and functionalization were identified. A putative MC translocase was identified that comprises a novel drug-binding and export system, which confers cellular self-protection on S. lavendulae. Two regulatory genes were also identified. CONCLUSIONS: The overall architecture of the MC biosynthetic gene cluster in S. lavendulae has been determined. Targeted manipulation of a putative MC pathway regulator led to a substantial increase in drug production. The cloned genes should help elucidate the molecular basis for creation of the mitosane ring system, as well efforts to engineer the biosynthesis of novel natural products.  相似文献   

15.
Tremorgenic mycotoxins are a group of indole alkaloids which include the quinazoline-containing tryptoquivaline (2) that are capable of eliciting intermittent or sustained tremors in vertebrate animals. The biosynthesis of this group of bioactive compounds, which are characterized by an acetylated quinazoline ring connected to a 6-5-5 imidazoindolone ring system via a 5-membered spirolactone, has remained uncharacterized. Here, we report the identification of a gene cluster (tqa) from P. aethiopicum that is involved in the biosynthesis of tryptoquialanine (1), which is structurally similar to 2. The pathway has been confirmed to go through an intermediate common to the fumiquinazoline pathway, fumiquinazoline F, which originates from a fungal trimodular nonribosomal peptide synthetase (NRPS). By systematically inactivating every biosynthetic gene in the cluster, followed by isolation and characterization of the intermediates, we were able to establish the biosynthetic sequence of the pathway. An unusual oxidative opening of the pyrazinone ring by an FAD-dependent berberine bridge enzyme-like oxidoreductase has been proposed based on genetic knockout studies. Notably, a 2-aminoisobutyric acid (AIB)-utilizing NRPS module has been identified and reconstituted in vitro, along with two putative enzymes of unknown functions that are involved in the synthesis of the unnatural amino acid by genetic analysis. This work provides new genetic and biochemical insights into the biosynthesis of this group of fungal alkaloids, including the tremorgens related to 2.  相似文献   

16.
In secondary metabolite biosynthesis, core synthetic genes such as polyketide synthase genes usually encode proteins that generate various backbone precursors. These precursors are modified by other tailoring enzymes to yield a large variety of different secondary metabolites. The number of core synthesis genes in a given species correlates, therefore, with the number of types of secondary metabolites the organism can produce. In our study, heterologous expression of all the A. terreus NRPS-like genes showed that two NRPS-like proteins, encoded by atmelA and apvA, release the same natural product, aspulvinone E. In hyphae this compound is converted to aspulvinones whereas in conidia it is converted to melanin. The genes are expressed in different tissues and this spatial control is probably regulated by their own specific promoters. Comparative genomics indicates that atmelA and apvA might share a same ancestral gene and the gene apvA is located in a highly conserved region in Aspergillus species that contains genes coding for life-essential proteins. Our data reveal the first case in secondary metabolite biosynthesis in which the tissue specific production of a single compound directs it into two separate pathways, producing distinct compounds with different functions. Our data also reveal that a single trans-prenyltransferase, AbpB, prenylates two substrates, aspulvinones and butyrolactones, revealing that genes outside of contiguous secondary metabolism gene clusters can modify more than one compound thereby expanding metabolite diversity. Our study raises the possibility of incorporation of spatial, cell-type specificity in expression of secondary metabolites of biological interest and provides new insight into designing and reconstituting their biosynthetic pathways.  相似文献   

17.
Angelica sinensis, a perennial herb that produces ferulic acid and phthalides for the treatment of cardio-cerebrovascular diseases, prefers growing at an altitude of 1800–3000 m. Geographical models have predicted that high altitude, cool temperature and sunshade play determining roles in geo-authentic formation. Although the roles of altitude and light in yield and quality have been investigated, the role of temperature in regulating growth, metabolites biosynthesis and gene expression is still unclear. In this study, growth characteristics, metabolites contents and related genes expression were investigated by exposing A. sinensis to cooler (15 °C) and normal temperatures (22 °C). The results showed that plant biomass, the contents of ferulic acid and flavonoids and the expression levels of genes related to the biosynthesis of ferulic acid (PAL1, 4CLL4, 4CLL9, C3H, HCT, CCOAMT and CCR) and flavonoids (CHS and CHI) were enhanced at 15 °C compared to 22 °C. The contents of ligustilide and volatile oils exhibited slight increases, while polysaccharide contents decreased in response to cooler temperature. Based on gene expression levels, ferulic acid biosynthesis probably depends on the CCOAMT pathway and not the COMT pathway. It can be concluded that cool temperature enhances plant growth, ferulic acid and flavonoid accumulation but inhibits polysaccharide biosynthesis in A. sinensis. These findings authenticate that cool temperature plays a determining role in the formation of geo-authentic and also provide a strong foundation for regulating metabolites production of A. sinensis.  相似文献   

18.
Mitomycin has a unique chemical structure and contains densely assembled functionalities with extraordinary antitumor activity. The previously proposed mitomycin C biosynthetic pathway has caused great attention to decipher the enzymatic mechanisms for assembling the pharmaceutically unprecedented chemical scaffold. Herein, we focused on the determination of acyl carrier protein (ACP)-dependent modification steps and identification of the protein–protein interactions between MmcB (ACP) with the partners in the early-stage biosynthesis of mitomycin C. Based on the initial genetic manipulation consisting of gene disruption and complementation experiments, genes mitE, mmcB, mitB, and mitF were identified as the essential functional genes in the mitomycin C biosynthesis, respectively. Further integration of biochemical analysis elucidated that MitE catalyzed CoA ligation of 3-amino-5-hydroxy-bezonic acid (AHBA), MmcB-tethered AHBA triggered the biosynthesis of mitomycin C, and both MitB and MitF were MmcB-dependent tailoring enzymes involved in the assembly of mitosane. Aiming at understanding the poorly characterized protein–protein interactions, the in vitro pull-down assay was carried out by monitoring MmcB individually with MitB and MitF. The observed results displayed the clear interactions between MmcB and MitB and MitF. The surface plasmon resonance (SPR) biosensor analysis further confirmed the protein–protein interactions of MmcB with MitB and MitF, respectively. Taken together, the current genetic and biochemical analysis will facilitate the investigations of the unusual enzymatic mechanisms for the structurally unique compound assembly and inspire attempts to modify the chemical scaffold of mitomycin family antibiotics.  相似文献   

19.
Cell suspension cultures of Arnebia euchroma were established from the friable callus on liquid Murashige and Skoog medium supplemented with 6-benzylaminopurine (10.0 μM) and indole-3-butyric acid (5.0 μM). Salicylic acid was used to study its effect on the enzymes which participate in shikonin biosynthesis with respect to metabolite (shikonin) content in the cell suspension culture of A. euchroma. In our study, phenylalanine ammonia lyase and PHB geranyltransferase were selected from the entire biosynthetic pathway. Results showed that phenylalanine ammonia lyase is responsible for growth and PHB geranyltransferase for metabolite production. Salicylic acid exhibited an inverse relationship with the metabolite content (shikonin); salicylic acid (100 μM) completely inhibited shikonin biosynthesis. The results presented in the current study can be successfully employed for the metabolic engineering of its biosynthetic pathway for the enhancement of shikonin, which will not only help in meeting its industrial demand but also lead to the conservation of species in its natural habitat.  相似文献   

20.
The apoptolidins are 20/21-membered macrolides produced by Nocardiopsis sp. FU40. Several members of this family are potent and remarkably selective inducers of apoptosis in cancer cell lines, likely via a distinct mitochondria associated target. To investigate the biosynthesis of this natural product, the complete genome of the apoptolidin producer Nocardiopsis sp. FU40 was sequenced and a 116 kb region was identified containing a putative apoptolidin biosynthetic gene cluster. The apoptolidin gene cluster comprises a type I polyketide synthase, with 13 homologating modules, apparently initiated in an unprecedented fashion via transfer from a methoxymalonyl-acyl carrier protein loading module. Spanning approximately 39 open reading frames, the gene cluster was cloned into a series of overlapping cosmids and functionally validated by targeted gene disruption experiments in the producing organism. Disruption of putative PKS and P450 genes delineated the roles of these genes in apoptolidin biosynthesis and chemical complementation studies demonstrated intact biosynthesis peripheral to the disrupted genes. This work provides insight into details of the biosynthesis of this biologically significant natural product and provides a basis for future mutasynthetic methods for the generation of non-natural apoptolidins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号