共查询到20条相似文献,搜索用时 0 毫秒
1.
We provide generalized entanglement constraints in multi-qubit systems in terms of Tsallis entropy. Using quantum Tsallis entropy of order q, we first provide a generalized monogamy inequality of multi-qubit entanglement for q=2 or 3. This generalization encapsulates the multi-qubit CKW-type inequality as a special case. We further provide a generalized polygamy inequality of multi-qubit entanglement in terms of Tsallis-q entropy for 1≤q≤2 or 3≤q≤4, which also contains the multi-qubit polygamy inequality as a special case. 相似文献
2.
L. Wang H. Al Hadhrami A. Vourdas 《The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics》2008,49(2):265-272
Symplectic Sp(2l, ℤp) transformations in l-partite finite systems are explicitly constructed. The general method is applied to bi-partite and tri-partite systems. The
effect of these transformations on the correlations and entanglement between the subsystems is discussed. 相似文献
3.
Comparability of multipartite entanglement 总被引:1,自引:0,他引:1
We prove, in a multipartite setting, that it is always feasible to exactly transform a genuinely m-partite entangled pure state with sufficient many copies to any other m-partite state via local quantum operation and classical communication. This result affirms the comparability of multipartite entangled pure states. 相似文献
4.
We study the dynamics of multipartite entanglement under the influence of decoherence. A suitable generalization of concurrence reveals distinct scaling of the entanglement decay rate of Greenberger-Horne-Zeilinger and W states, for various environments. 相似文献
5.
We present a theoretical method to determine the multipartite entanglement between different partitions of multimode, fully or partially symmetric Gaussian states of continuous variable systems. For such states, we determine the exact expression of the logarithmic negativity and show that it coincides with that of equivalent two-mode Gaussian states. Exploiting this reduction, we demonstrate the scaling of the multipartite entanglement with the number of modes and its reliable experimental estimate by direct measurements of the global and local purities. 相似文献
6.
We study the entanglement dynamics of two cavities interacting with independent reservoirs. Expectedly, as the cavity entanglement is depleted, it is transferred to the reservoir degrees of freedom. We find also that when the cavity entanglement suddenly disappears, the reservoir entanglement suddenly and necessarily appears. Surprisingly, we show that this entanglement sudden birth can manifest before, simultaneously, or even after entanglement sudden death. Finally, we present an explanatory study of other entanglement partitions and of higher dimensional systems. 相似文献
7.
We show how to detect entanglement with criteria built from simple two-body correlation terms. Since many natural Hamiltonians
are sums of such correlation terms, our ideas can be used to detect entanglement by energy measurement. Our criteria can straightforwardly
be applied for detecting different forms of multipartite entanglement in familiar spin models in thermal equilibrium.
PACS 03.65.Ud; 03.67.Mn; 05.50.+q 相似文献
8.
We study bipartite quantum discord as a manifestation of a multipartite entanglement structure in the tripartite purified system. In particular, we find that bipartite quantum discord requires the presence of both bipartite and tripartite entanglement in the purification. This allows one to understand the asymmetry of quantum discord, D(A,B)≠D(B,A) in terms of entanglement monogamy. As instructive special cases, we study discord for qubits and Gaussian states in detail. As a result of this we shed new light on a counterintuitive property of Gaussian states: the presence of classical correlations necessarily requires the presence of quantum correlations. Finally, our results also shed new light on a protocol for remote activation of entanglement by a third party. 相似文献
9.
We present an explicit protocol E0 for faithfully teleporting an arbitrary two-qubit state via a genuine four-qubit entangled state. By construction, our four-partite state is not reducible to a pair of Bell states. Its properties are compared and contrasted with those of the four-party Greenberger-Horne-Zeilinger and W states. We also give a dense coding scheme D0 involving our state as a shared resource of entanglement. Both D0 and E0 indicate that our four-qubit state is a likely candidate for the genuine four-partite analogue to a Bell state. 相似文献
10.
Paternostro M Vitali D Gigan S Kim MS Brukner C Eisert J Aspelmeyer M 《Physical review letters》2007,99(25):250401
We propose an immediately realizable scheme showing signatures of multipartite entanglement generated by radiation pressure in a cavity system with a movable mirror. We show how the entanglement involving the inaccessible massive object is unraveled by means of field-field quantum correlations and persists within a wide range of working conditions. Our proposal provides an operative way to infer the quantum behavior of a system that is only partially accessible. 相似文献
11.
The unified symmetry of mechano-electrical systems with nonholonomic constraints are studied in this paper, the definition and the criterion of unified symmetry of mechano-electrical systems with nonholonomic constraints are derived from the Lagrange-Maxwell equations. The Noether conserved quantity, Hojman conserved quantity and Mei conserved quantity are then deduced from the unified symmetry. An example is given to illustrate the application of the results. 相似文献
12.
We present entanglement witness operators for detecting genuine multipartite entanglement. These witnesses are robust against noise and require only two local measurement settings when used in an experiment, independent of the number of qubits. This allows detection of entanglement for an increasing number of parties without a corresponding increase in effort. The witnesses presented detect states close to Greenberger-Horne-Zeilinger, cluster, and graph states. Connections to Bell inequalities are also discussed. 相似文献
13.
We present a one-step deterministic multipartite entanglement purification scheme for an N-photon system in a Greenberger-Horne-Zeilinger state with linear optical elements. The parties in quantum communication can in principle obtain a maximally entangled state from each N-photon system with a success probability of 100%. That is, it does not consume the less-entangled photon systems largely, which is far different from other multipartite entanglement purification schemes. This feature maybe make this scheme more feasible in practical applications. 相似文献
14.
15.
Gour G 《Physical review letters》2010,105(19):190504
We discover a simple factorization law describing how multipartite entanglement of a composite quantum system evolves when one of the subsystems undergoes an arbitrary physical process. This multipartite entanglement decay is determined uniquely by a single factor we call the entanglement resilience factor. Since the entanglement resilience factor is a function of the quantum channel alone, we find that multipartite entanglement evolves in exactly the same way as bipartite (two qudits) entanglement. For the two qubits case, our factorization law reduces to the main result of [T. Konrad, Nature Phys. 4, 99 (2008)10.1038/nphys885]. In addition, for a permutation P, we provide an operational definition of P asymmetry of entanglement, and find the conditions when a permuted version of a state can be achieved by local means. 相似文献
16.
We propose a method of generating multipartite entanglement by considering the interaction of a system of N two-level atoms in a cavity of high quality factor with a strong classical driving field. It is shown that, with a judicious choice of the cavity detuning and the applied coherent field detuning, vacuum Rabi coupling produces a large number of important multipartite entangled states. It is even possible to produce entangled states involving different cavity modes. Tuning of parameters also permits us to switch from Jaynes-Cummings to anti-Jaynes-Cummings-like interaction. 相似文献
17.
We introduce an operational interpretation for pure-state global multipartite entanglement based on quantum estimation. We show that the estimation of the strength of low-noise locally depolarizing channels, as quantified by the regularized quantum Fisher information, is directly related to the Meyer-Wallach multipartite entanglement measure. Using channels that depolarize across different partitions, we obtain related multipartite entanglement measures. We show that this measure is the sum of expectation values of local observables on two copies of the state. 相似文献
18.
We show that the rich structure of multipartite entanglement can be tested following a device-independent approach. Specifically we present Bell inequalities for distinguishing between different types of multipartite entanglement, without placing any assumptions on the measurement devices used in the protocol, in contrast with usual entanglement witnesses. We first address the case of three qubits and present Bell inequalities that can be violated by W states but not by Greenberger-Horne-Zeilinger states, and vice versa. Next, we devise 'subcorrelation Bell inequalities' for any number of parties, which can provably not be violated by a broad class of multipartite entangled states (generalizations of Greenberger-Horne-Zeilinger states), but for which violations can be obtained for W states. Our results give insight into the nonlocality of W states. The simplicity and robustness of our tests make them appealing for experiments. 相似文献
19.
20.
We formulate a universal characterization of the many-particle quantum entanglement in the ground state of a topologically ordered two-dimensional medium with a mass gap. We consider a disk in the plane, with a smooth boundary of length L, large compared to the correlation length. In the ground state, by tracing out all degrees of freedom in the exterior of the disk, we obtain a marginal density operator rho for the degrees of freedom in the interior. The von Neumann entropy of rho, a measure of the entanglement of the interior and exterior variables, has the form S(rho) = alphaL - gamma + ..., where the ellipsis represents terms that vanish in the limit L --> infinity. We show that - gamma is a universal constant characterizing a global feature of the entanglement in the ground state. Using topological quantum field theory methods, we derive a formula for gamma in terms of properties of the superselection sectors of the medium. 相似文献