首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This report presents a comprehensive experimental and computational study of the thermodynamic properties of two bromine fluorene derivatives: 2-bromofluorene and 2,7-dibromofluorene. The standard (p° = 0.1 MPa) molar enthalpies of formation in the crystalline phase of these compounds were derived from the standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by rotating bomb combustion calorimetry. The vapour pressures of the crystalline phase of the two compounds were measured using the Knudsen effusion method and a static method that has also been used to measure the liquid vapour pressures of 2-bromofluorene. From these results the standard molar enthalpies, entropies and Gibbs energies of sublimation of the two compounds studied and of vapourisation of 2-bromofluorene were derived. The enthalpies and temperatures of fusion were determined from DSC experiments. Derived results of standard enthalpies and Gibbs energies of formation, in both gaseous and crystalline phases, were compared with the ones reported in the literature for fluorene.The experimental values of the gas-phase enthalpies of formation of each compound were compared with estimates based on density functional theory calculations using the B3LYP hybrid exchange–correlation energy functional with the 6-311++G(d,p) basis set.  相似文献   

2.
The vapor pressures of crystalline and liquid phases of methyl p-hydroxybenzoate and of methyl p-methoxybenzoate were measured over the temperature ranges (338.9 to 423.7) K and (292.0 to 355.7) K respectively, using a static method based on diaphragm capacitance gauges. The vapor pressures of the crystalline phase of the former compound were also measured in the temperature range (323.1 to 345.2) K using a Knudsen mass-loss effusion technique. The results enabled the determination of the standard molar enthalpies, entropies and Gibbs free energies of sublimation and of vaporization, at T = 298.15 K, as well as phase diagram representations of the (p, T) experimental data, including the triple point. The temperatures and molar enthalpies of fusion of both compounds were determined using differential scanning calorimetry and were compared with the results indirectly derived from the vapor pressure measurements. The standard (p° = 105 Pa) molar enthalpies of formation, in the crystalline phase, at T = 298.15 K, of the compounds studied were derived from their standard massic energies of combustion measured by static-bomb combustion calorimetry. From the experimental results, the standard molar enthalpies of formation, in the gaseous phase at T = 298.15 K, were calculated and compared with the values estimated by employing quantum chemical computational calculations. A good agreement between experimental and theoretical results is observed. To analyze the thermodynamic stability of the two compounds studied, the standard Gibbs free energies of formation in crystalline and gaseous phases were undertaken. The standard molar enthalpies of formation of the title compounds were also estimated from two different computational approaches using density functional theory-based B3LYP and the multilevel G3 methodologies.  相似文献   

3.
This report presents a comprehensive experimental and computational study of the thermodynamic properties of two fluorene derivatives: 2-aminofluorene and 2-nitrofluorene. The standard (p° = 0.1 MPa) molar enthalpies of formation in the crystalline phase of these compounds were derived from the standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by static bomb combustion calorimetry. A Knudsen effusion method was used to perform the vapour pressure study of the referred compounds, yielding an accurate determination of the standard molar enthalpies and entropies of sublimation. The enthalpies of sublimation were also determined using Calvet microcalorimetry and the enthalpy and temperature of fusion were derived from DSC experiments. Derived results of standard enthalpy and Gibbs energy of formation in both gaseous and crystalline phases were compared with the ones reported in literature for fluorene. A theoretical study at the G3 and G4 levels has been carried out, and the calculated enthalpies of formation have been compared to the experimental values.  相似文献   

4.
The standard (p degrees = 0.1 MPa) molar enthalpies of formation, Delta(f)H(m)degrees, of crystalline 2-, 3- and 4-chlorobenzophenone and 4,4'-dichlorobenzophenone were derived from the standard molar energies of combustion, Delta(c)U(m)degrees, in oxygen, to yield CO(2)(g), N(2)(g), and HCl x 600H(2)O(l), at T = 298.15 K, measured by rotating bomb combustion calorimetry. The Calvet high-temperature vacuum sublimation technique was used to measure the enthalpy of sublimation, Delta(cr)(g)H(m)degrees, of the compound 2-chlorobenzophenone. For the other three compounds, the standard molar enthalpies of sublimation, at T = 298.15 K were derived by the Clausius-Clapeyron equation, from the temperature dependence of the vapor pressures of these compounds, measured by the Knudsen-effusion technique. From the values of Delta(f)H(m)degrees and Delta(cr)(g)H(m)degrees, the standard molar enthalpies of formation of all the compounds, in the gaseous phase, Delta(f)H(m)degrees (g), at T = 298.15 K, were derived. These values were also calculated by using the B3LYP/6-311+G(2d,2p)//B3LYP/6-31G(d) computational approach.  相似文献   

5.
Knudsen mass-loss effusion technique was used for measuring the vapor pressures at different temperatures of the following crystalline compounds: diphenylacetic acid, between 357.27 and 379.08 K; triphenylacetic acid, between 418.98 and 436.97 K; 2,2-diphenylpropanoic acid, between 366.08 and 386.00 K; 3,3-diphenylpropanoic acid, between 366.09 and 386.03 K; 3,3,3-triphenylpropanoic acid, between 402.17 and 420.10 K. From the temperature dependence of the vapor pressure of each crystalline compound, the standard (p 0 = 105 Pa) molar enthalpies and Gibbs energies of sublimation, at T = 298.15 K, were derived. The measured thermodynamic properties are compared with literature results for phenylacetic and phenylpropanoic acids and correlations for estimation of the vapor pressures from the enthalpy of sublimation and the temperature of fusion of these and other compounds are presented.  相似文献   

6.
The Knudsen mass-loss effusion technique was used to measure the vapour pressures of the three crystalline isomers of methylbenzamide. From the temperature dependence of the vapour pressures, the standard molar enthalpies of sublimation and the enthalpies of the intermolecular hydrogen bonds N−H⋯O were calculated. The temperature and molar enthalpy of fusion of the studied isomers were measured using differential scanning calorimetry. The values of the standard (p° = 0.1 MPa) molar enthalpy of formation in the crystalline phase, at T = 298.15 K, of the compounds studied were derived from their standard massic energies of combustion measured by static-bomb combustion calorimetry. From the experimental values, the standard molar enthalpies of formation in the gaseous phase, at T = 298.15 K, were calculated and compared with the values estimated by employing computational calculations that were conducted using different quantum chemical methods: G3(MP2), G3, and CBS-QB3. Good agreement between experimental and theoretical results is verified. The aromaticity of the compounds has been evaluated through nucleus independent chemical shifts (NICS) calculations.  相似文献   

7.
The standard (p o=0.1 MPa) molar energies of combustion for the crystalline 1-benzyl-4-piperidinol and 4-piperidine-piperidine, and for the liquid 4-benzylpiperidine, were measured by static bomb calorimetry, in oxygen, at T=298.15 K. The standard molar enthalpies of sublimation or vaporization, at T=298.15 K, of these three compounds were determined by Calvet microcalorimetry. Those values were used to derive the standard molar enthalpies of formation, at T=298.15 K, in their condensed and gaseous phase, respectively.  相似文献   

8.
The determination of the reliable thermodynamic properties of 2-benzoxazolinone derivatives is the main goal of this work. Some correlations are established between the energetic properties determined and the structural characteristics of the title compounds, and the reactivity of this class of compounds is also evaluated. Static-bomb combustion calorimetry and high-temperature Calvet microcalorimetry were used to determine, respectively, the standard molar enthalpies of formation in the solid state and the standard molar enthalpies of sublimation, both at T = 298.15 K. Using the results obtained for each compound, the respective gas-phase standard molar enthalpy of formation was derived. High-level quantum chemical calculations were performed to estimate the same property and the results evidence good accordance. Moreover, the gas-phase relative thermodynamic stability of 2-benzoxazolinone derivatives was also evaluated using the respective gas-phase standard molar Gibbs energy of formation. In addition, the relationship between the energetic and structural characteristics of the benzoxazolinones is presented, evidencing the enthalpic increments associated with the presence of a methyl and a nitro groups in the molecule, and this effect is compared with similar ones in other structurally related compounds.  相似文献   

9.
Measurements leading to the calculation of the standard thermodynamic properties for gaseous 1,2,3,4-tetrahydrodibenzothiophene (Chemical Abstracts registry number [16587-33-0]) are reported. Experimental methods include combustion calorimetry, adiabatic heat-capacity calorimetry, vibrating-tube densitometry, comparative ebulliometry, inclined-piston gauge manometry, and differential-scanning calorimetry (d.s.c.). Critical properties are estimated for 1,2,3,4-tetrahydrodibenzothiophene. Standard molar entropies, standard molar enthalpies, and standard molar Gibbs free energies of formation are derived at selected T between (298.15 and 600) K.  相似文献   

10.
The standard (p(o) = 0.1 MPa) molar enthalpies of formation of 2,3-, 2,4-, 2,5-, 2,6-, 3,4- and 3,5-dichloroanilines were derived from the standard molar energies of combustion, in oxygen, to yield CO(2)(g), N(2)(g) and HCl.600H(2)O(l), at T = 298.15 K, measured by rotating bomb combustion calorimetry. The Calvet high-temperature vacuum sublimation technique was used to measure the enthalpies of sublimation of the six isomers. These two thermodynamic parameters yielded the standard molar enthalpies of formation of the six isomers of dichloroaniline, in the gaseous phase, at T = 298.15 K. The gas-phase enthalpies of formation were also estimated by G3MP2B3 calculations, which were further extended to the computation of gas-phase acidities, proton affinities, and ionization enthalpies.  相似文献   

11.
The standard (p° = 0.1 MPa) molar enthalpies of formation, in the crystalline phase, of 1-phenylpyrrole and 1-(4-methylphenyl)pyrrole, at T = 298.15 K, were derived from the standard molar energies of combustion in oxygen, measured by static-bomb combustion calorimetry. For these compounds, the standard molar enthalpies of sublimation, at T = 298.15 K, were determined from the temperature–vapour pressure dependence, obtained by the Knudsen mass-loss effusion method. Using estimated values for the heat capacity differences between the gas and the crystal phases of the studied compounds, the standard (p° = 0.1 MPa) molar enthalpies, entropies, and Gibbs energies of sublimation, at T = 298.15 K, were derived. From the experimental values, the standard molar enthalpies of formation, in the gaseous phase, at T = 298.15 K, were calculated.Additionally, the enthalpies of formation of both compounds were estimated using the composite G3(MP2)//B3LYP approach together with adequate gas-phase working reactions. There is a very good agreement between computational and experimental results.  相似文献   

12.
The standard (p° = 0.1 MPa) molar enthalpies of formation, at T = 298.15 K, of 4-chloro-3-nitroaniline and 5-chloro-2-nitroaniline, in the condensed phase, were derived from their standard molar energies of combustion, in oxygen, to yield CO2(g), N2(g), and HCl · 600H2O(l), measured by rotating bomb combustion calorimetry. From the temperature dependence of the vapour pressures of these compounds, measured by the Knudsen effusion technique, their standard molar enthalpies of sublimation, at T = 298.15 K, were derived by means of the Clausius–Clapeyron equation. The Calvet microcalorimetry was also used to measure the standard molar enthalpies of sublimation of these compounds, at T = 298.15 K. The combination of the standard molar enthalpies of formation in the condensed phases and the standard molar enthalpies of sublimation yielded the standard molar enthalpies of formation in the gaseous phase at T = 298.15 K for each isomer. Further, the standard (p° = 0.1 MPa) molar enthalpies, entropies and Gibbs free energies of sublimation, at T = 298.15 K, were also derived.The standard molar enthalpies of formation, in the gaseous phase of all the chloronitroaniline isomers were also estimated by the Cox scheme and by the use of computational thermochemistry and compared with the available experimental values.  相似文献   

13.
A static method based on capacitance gauges was used to measure the vapor pressures of the condensed phases of the methyl esters of the three aminobenzoic acids. For methyl o-aminobenzoate the vapor pressures of the liquid phase were measured in the range (285.4 to 369.5) K. For the meta and para isomers vapor pressures of both crystalline and liquid phases were measured in the ranges (308.9 to 376.6) K, and (332.9 to 428.0) K, respectively. Vapor pressures of the latter compound were also measured using the Knudsen effusion method in the temperature range (319.1 to 341.2) K.From the dependence of the vapor pressures on the temperature, the standard molar enthalpies and entropies of sublimation and of vaporization were derived. Differential scanning calorimetry was used to measure the temperatures and molar enthalpies of fusion of the three isomers. The results enabled the estimation of the enthalpy of the intermolecular (N−HO) hydrogen bond in the crystalline methyl p-aminobenzoate. A correlation relating the temperature of fusion and the enthalpy and Gibbs energy of sublimation of benzene, methyl benzoates and benzoic acids was derived.  相似文献   

14.
The standard (p° = 0.1 MPa) molar enthalpies of formation of crystalline 2,3,5-trimethylpyrazine-1,4-dioxide and 2,3,5,6-tetramethylpyrazine-1,4-dioxide were measured, at T = 298.15 K, by static bomb calorimetry and the standard molar enthalpies of sublimation, at T = 298.15 K, were obtained from Calvet microcalorimetric measurements. These values were used to derive the respective standard molar enthalpies of formation in gaseous phase. The mean N–O bond dissociation enthalpy has been calculated for both compounds.  相似文献   

15.
The standard (p(o) = 0.1 MPa) molar energies of combustion in oxygen, at T = 298.15 K, of solid 3,3-tetramethyleneglutaric acid and the related 3,3-tetramethyleneglutaric anhydride and 3,3-tetramethyleneglutarimide were measured by static bomb combustion calorimetry. The values of the standard molar enthalpies of sublimation, at T = 298.15 K, were obtained by Calvet microcalorimetry, allowing the calculation of the standard molar enthalpies of formation of the compounds, in the gaseous state, at T = 298.15 K. The geometries of the experimentally studied compounds were fully optimized using density functional theory with the B3LYP functional and extended basis sets. More accurate energies were also obtained from single-point calculations at the most stable B3LYP/6-311G** geometries, using the cc-pVTZ basis set. From these calculations the standard molar enthalpies of formation of 3,3-tetramethyleneglutaric acid, 3,3-tetramethyleneglutaric anhydride, and 3,3-tetramethyleneglutarimide were estimated using isodesmic reactions involving glutaric acid, glutaric anhydride, and glutarimide, respectively. Experimental and computational results were used in the discussion of the interrelation of energetics and structure in these compounds and compared with other structurally related compounds.  相似文献   

16.
The standard (p 0 = 0.1 MPa) molar enthalpies of formation for the liquid 2,3-dimethylpyrazine and trimethylpyrazine and the crystalline 2,3-dimethylquinoxaline and tetramethylpyrazine were derived from the standard molar enthalpies of combustion, in oxygen, atT=298.15 K, measured by static-bomb combustion calorimetry. The standard molar enthalpies of vaporization or of sublimation for the same compounds were determined by Calvet microcalorimetry. Ab initio full geometry optimization at the 3-21G and 6-31G* levels were also performed for all the methylpyrazine isomers. MP2/RHF/3-21G//3-21G and DFT energies were also calculated for all the methylpyrazine isomers, thus allowing us to estimate their isodesmic resonance energies.  相似文献   

17.
The Knudsen mass-loss effusion technique was used to measure the vapour pressures at different temperatures of two crystalline ruthenium complexes: tris(1,1,1-trifluoro-2,4-pentanedionate)ruthenium(III) {Ru(tfacac)3}, between T =  350.20 K and T =  369.17 K and tris(1,1,1,5,5,5-hexafluoro-2,4-pentanedionate)ruthenium(III) {Ru(hfacac)3} between T =  299.15 K and T =  313.14 K. From the temperature dependence of the vapour pressure of the crystalline compounds, the standard molar enthalpies of sublimation were derived by the Clausius–Clapeyron equation and the molar entropies of sublimation at equilibrium pressures were calculated. By using an estimated value for the heat capacity differences between the gas and the crystal phases the standard, po =  105Pa, molar enthalpies, entropies, and Gibbs energies of sublimation at T =  298.15 K, were derived:  相似文献   

18.
The standard (p° = 0.1 MPa) molar enthalpies of formation, in the crystalline phase, at T = 298.15 K, for 5-methyluracil, 6-methyluracil, and 5-nitrouracil were derived from the values of the standard massic energies of combustion measured by static bomb combustion calorimetry. The results obtained together with literature values of the enthalpies of sublimation yielded the standard molar enthalpies of formation, in gaseous phase, at T = 298.15 K. These values are discussed in the terms of structural enthalpic increments.  相似文献   

19.
The standard (p degrees = 0.1 MPa) molar enthalpies of formation of 2-, 3-, and 4-chloroaniline were derived from the standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by rotating bomb combustion calorimetry. The Calvet high-temperature vacuum sublimation technique was used to measure the enthalpies of vaporization or sublimation of the three isomers. These two thermodynamic parameters yielded the standard molar enthalpies of formation of the three isomers of chloroaniline, in the gaseous phase, at T = 298.15 K, as 53.4 +/- 3.1 kJ.mol(-1) for 2-chloroaniline, 53.0 +/- 2.8 kJ.mol(-1) for 3-chloroaniline, and 59.7 +/- 2.3 kJ.mol(-1) for 4-chloroaniline. These values, which correct previously published data, were used to test the computational methodologies used. Therewith, gas-phase acidities, proton affinities, electron donor capacities, and N-H bond dissociation enthalpies were calculated and found to compare well with available experimental data for these parameters.  相似文献   

20.
The standard (po = 0.1 MPa) molar enthalpies of formation in the condensed phase of seven isomers of fluoromethylaniline were derived from the standard molar energies of combustion, in oxygen, to yield CO2(g), N2(g) and HF.10H2O(l), at T = 298.15 K, measured by rotating bomb combustion calorimetry. The standard molar enthalpies of vaporization or sublimation of these compounds, also at T = 298.15 K, were determined using Calvet microcalorimetry, while the enthalpies of fusion of the solid compounds were determined by differential scanning calorimetry. The standard molar enthalpies of formation in the gaseous phase, at T = 298.15 K, were derived from the former two experimental quantities. G3MP2//B3LYP calculations were performed for all possible fluoromethylanilines allowing the estimation of data for the isomers that were not studied experimentally. The Cox scheme was applied with two different approaches for the estimation of the standard molar enthalpies of formation of all the isomers studied, and this led to the conclusion that the literature values for the enthalpies of formation of the meta and para isomers of methylaniline seem to be not reliable. Further G3MP2//B3LYPs calculations on the methylaniline isomers yielded new values for the standard molar enthalpies of formation of the isomers of methylaniline, which have been tested under the Cox scheme, resulting in better estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号