首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
YBa2Cu3O7(YBCO) thin films have been prepared by thermal coevaporation on LaAlO3(LAO) substrates, and Tl2Ba2CaCu2O8(TBCCO) thin films are synthesized by magnetron sputtering method on LAO substrates. The transition temperature Tc is 90\,K for YBCO/LAO and 104\,K for TBCCO/LAO. Microwave responses of the films are studied systematically by coplanar resonator technique. Energy gaps of the films obtained are {\it\Delta}0=1.04kBTc for YBCO films and ${\it\Delta}_0=0.84kBTc for TBCCO films by analysing the temperature dependence of resonant frequencies of coplanar resonator. Penetration depth at 0\,K \lambda 0=198nm for YBCO films and \lambda0 =200nm for TBCCO films could also be obtained by using the weak coupling theory and two fluid theory. Results of penetration depth and energy gap confirm the weak coupling properties of the films. In addition, microwave surface resistances Rs of YBCO/LAO and TBCCO/LAO are also investigated by analysing the quality factor and insert loss of the coplanar resonator. Surface resistance of TBCCO/LAO is less than that of YBCO/LAO, so that TBCCO/LAO films may have more potential applications.  相似文献   

2.
Highly epitaxial YBa2Cu3O7-δ (YBCO) and yttria-stabilized zirconia (YSZ) bilayer thin films have been deposited on silicon-on-insulator (SOI) substrates by using in situ pulsed laser deposition (PLD) technique. In the experiment, the native amorphous SiO2 layers on some of the SOI substrates are removed by dipping them in a 10% HF solution for 15 s. Comparing several qualities of films grown on substrates with or without HF pretreatment, such as thin film crystallinity, general surface roughness, temperature dependence of resistance, surface morphology, as well as average crack spacing and crack width, naturally leads to the conclusion that preserving the native SiO2 layer on the surface of the SOI substrate can not only simplify the experimental process but can also achieve fairly high quality YSZ and YBCO thin films.  相似文献   

3.
The a-axis oriented YBa2Cu3Ox(YBCO) thin films could be grown on (100) SrTiO3(STO) substrates with STO buffer layers by dc and rf magnetron sputtering either by low-ering the deposition temperature, or by using a self-template technique. For the latter, the resistivity of the thin film at 290K along the substrate [001] direction is about four times larger than that in the [010] direction. The zero resistance temperatures Tc0 are 89 K in both directions. So high quality a-axis oriented YBCO thin films can be prepared by the self-template technique. Also the Tc0 increase monotonously with the reduction of the thickness of the YBCO seed layer.  相似文献   

4.
Double-sided superconducting MgB2 thin films are deposited onto c-A120a substrates by the hybrid physical chemical vapour deposition method. The microwave response of MgB2/A12O3 is investigated by microstrip resonator technique. A grain-size model is introduced to the theory of microstrip resonators to analyse microwave properties of the films. We obtain effective penetration depth of the films at OK (λe0 = 463nm) and surface resistance (R8 = 1.52 mΩ at 11 K and 8. 73 GHz) by analysing the resonant frequency and unload quality factor of the microstrip resonator, which suggests that the impurities and disorders of grain boundaries of MgB2/A12 Oa result in increasing penetration depth and surface resistance of the films.  相似文献   

5.
Superconducting thick films were grown on single crystals MgO and YSZ by electrophoretic deposition with Y_2BaCuO_5(Y211) addition. YBCO thick films were then accomplished by sintering the precursor films above the peritectic temperature. Single crystals of MgO (3×3×0.5 mm^3) were used as top-seed to control crystal structure of the thick films. As shown by scanning electron microscopy, the morphologies of YBCO/YSZ and YBCO/MgO thick films are spherulitic texture and platelet type. The critical temperature is ~89 K for the YBCO/YSZ thick film; the onset transition temperature is 86.4 K and the transition width is ~3 K for YBCO/MgO thick film. The critical current densities (as determined by Bean model) are, in A/cm^2, 3870 (77 K) for YBCO/YSZ thick films and 2399 (77 K) for YBCO/MgO thick films, which are comparable to the best J_c reported of the thick films prepared by the same method.  相似文献   

6.
Study for infrared spectroscopic ellipsometric properties of diamond films   总被引:1,自引:0,他引:1  
Spectroscopic ellipsometric measurements in infrared region (2.5 - 12.5 μm) are carried out to characterize the structure and quality of diamond films grown by microwave plasma chemical vapor deposition (MPCVD) and hot filament chemical vapor deposition (HFCVD), respectively. It is found that the establishment of appropriate models has the strongest influence on the fit of ellipsometric spectra. The best fit is achieved for MPCVD film with a 77.5-nm middle layer of SiO2, and for HFCVD film with an 879-nm rough surface layer included by Bruggeman effective medium approtimation (EMA). Finally the refractive index and the extinction coefficient are calculated for both films, the results show that the film grown by MPCVD is optically much better than that grown by HFCVD at infrared wavelengths.  相似文献   

7.
Tensile strain,crystal quality,and surface morphology of 500 nm thick Ge films were improved after rapid thermal annealing at 900 C for a short period(20 s).The films were grown on Si(001)substrates by ultra-high vacuum chemical vapor deposition.These improvements are attributed to relaxation and defect annihilation in the Ge films.However,after prolonged(20 s)rapid thermal annealing,tensile strain and crystal quality degenerated.This phenomenon results from intensive Si–Ge mixing at high temperature.  相似文献   

8.
In this study, Tungsten Oxide (WO3) thin films were prepared by Chemical Spray Pyrolysis (CSP) and Spin Coating (SC) techniques and it was investigated effects of technique and parameter on the films. WO3 thin films were deposited on ITO (Indium Tin Oxide) coated glasses. The structural, optical and electrochromic properties of the WO3 thin films were characterized by XRD, SEM, UV, and CV measurements. The sharpest (200) peak was observed in the XRD spectra and optical band gaps were calculated around 2.6~3.1 eV via UV-Vis spectra for all of the samples. Micro fibrous reticulated surface (filamentous like) morphology for the films deposited by CSP technique and smooth surface morphology with high optical transmittance for the film deposited by SC Technique were obtained from SEM images. In addition to these results, it was revealed that all the samples exhibit good electrochromic performance.  相似文献   

9.
高艳涛  张晓丹  赵颖  孙健  朱峰  魏长春  陈飞 《中国物理》2006,15(5):1110-1113
Hydrogenated microcrystalline silicon (\mu c-Si:H) films are fabricated by very high frequency plasma enhanced chemical vapour deposition (VHF-PECVD) at a silane concentration of 7% and a varying total gas flow rate (Hk2+SiHk4). Relations between the total gas flow rate and the electrical and structural properties as well as deposition rate of the films are studied. The results indicate that with the total gas flow rate increasing the photosensitivity and deposition rate increase, but the crystalline volume fraction (Xkc) and dark conductivity decrease. And the intensity of (220) peak first increases then decreases with the increase of the total gas flow rate. The cause for the changes in the structure and deposition rate of the films with the total gas flow rate is investigated using optical emission spectroscopy (OES).  相似文献   

10.
As a newly developed method for fabricating Josephson junctions, a focused helium ion beam has the advantage of producing reliable and reproducible junctions. We fabricated Josephson junctions with a focused helium ion beam on our 50 nm YBa2Cu3O7-δ(YBCO) thin films. We focused on the junction with irradiation doses ranging from 100 to 300 ions/nm and demonstrated that the junction barrier can be modulated by the ion dose and that within this dose range, the junct...  相似文献   

11.
Intrinsic hydrogenated microcrystalline silicon (\muc-Si:H) films have been prepared by hot-wire-assisted microwave electron-cyclotron-resonance chemical vapour deposition (HW-MWECR-CVD) under different deposition conditions. Fourier-transform infrared spectra and Raman spectra were measured. Optical band gap was determined by Tauc plots, and experiments of photo-induced degradation were performed. It was observed that hydrogen dilution plays a more essential role than substrate temperature in microcrystalline transformation at low temperatures. Crystalline volume fraction and mean grain size in the films increase with the dilution ratio (R=H2/(H2+SiH4)). With the rise of crystallinity in the films, the optical band gap tends to become narrower while the hydrogen content and photo-induced degradation decrease dramatically. The samples, were identified as \mu c-Si:H films, by calculating the optical band gap. It is considered that hydrogen dilution has an effect on reducing the crystallization activation energy of the material, which promotes the heterogeneous solid-state phase transition characterized by the Johnson--Mehl--Avrami (JMA) equation. The films with the needed structure can be prepared by balancing deposition and crystallization through controlling process parameters.  相似文献   

12.
Large-area boron nanowire(BNW) films were fabricated on the Si(111) substrate by chemical vapor deposition(CVD). The average diameter of the BNWs is about 20 nm, with lengths of 5–10 μm. Then, graphene-capped boron nanowires(GC-BNWs) were obtained by microwave plasma chemical vapor deposition(MPCVD). Characterization by scanning electron microscopy indicates that few-layer graphene covers the surface of the boron nanowires. Field emission measurements of the BNWs and GC-BNW films show that the GC-BNW films have a lower turn-on electric field than the BNW films.  相似文献   

13.
Three-dimensional(3 D) topological insulators(TIs) are candidate materials for various electronic and spintronic devices due to their strong spin-orbit coupling and unique surface electronic structure.Rapid,low-cost preparation of large-area TI thin films compatible with conventional semiconductor technology is the key to the practical applications of TIs.Here we show that wafer-sized Bi2 Te3 family TI and magnetic TI films with decent quality and well-controlled compositio...  相似文献   

14.
This paper used optical emission spectroscopy (OES) to study the gas phase in high power DC arc plasma jet chemical vapour deposition (CVD) during diamond films growth processes. The results show that all the deposition parameters (methane concentration, substrate temperature, gas flow rate and ratio of H2/Ar) could strongly influence the gas phase. C2 is found to be the most sensitive radical to deposition parameters among the radicals in gas phase. Spatially resolved OES implies that a relative high concentration of atomic H exists near the substrate surface, which is beneficial for diamond film growth. The relatively high concentrations of C2 and CH are correlated with high deposition rate of diamond. In our high deposition rate system, C2 is presumed to be the main growth radical, and CH is also believed to contribute the diamond deposition.  相似文献   

15.
Titanium oxides (TiO2) and TiO2 films have recently attracted more attention on the application of microelectronic devices and microwave communication systems for processing temperature and environmentally stable dielectric properties characterized by high relative dielectric constant and low dielectric loss. Many deposition methods have been used to prepare TiO2 films including pulsed laser deposition, filered arc deposition, sol-gel method and reactive sputtering methods. Previous reports on TiO2 films prepared by MDO have primarily focused on surface mechanical and biologic properties, in contrast.  相似文献   

16.
王金良  毋二省 《中国物理》2007,16(3):848-853
The B- and P-doped hydrogenated nanocrystalline silicon films (nc-Si\jz{0.2ex}{:}H) are prepared by plasma-enhanced chemical vapour deposition (PECVD). The microstructures of doped nc-Si\jz{0.2ex}{:}H films are carefully and systematically characterized by using high resolution electron microscopy (HREM), Raman scattering, x-ray diffraction (XRD), Auger electron spectroscopy (AES), and resonant nucleus reaction (RNR). The results show that as the doping concentration of PH3 increases, the average grain size (d) tends to decrease and the crystalline volume percentage (Xc) increases simultaneously. For the B-doped samples, as the doping concentration of B2H\xj{6} increases, no obvious change in the value of d is observed, but the value of Xc is found to decrease. This is especially apparent in the case of heavy B2H2 doped samples, where the films change from nanocrystalline to amorphous.  相似文献   

17.
The growth of γ-In2Se3 thin films on mica by molecular beam epitaxy is studied. Single-crystalline γ-In2Se3 is achieved at a relatively low growth temperature. An ultrathin β-In2Se3 buffer layer is observed to nucleate and grow through a process of self-organization at initial deposition, which facilitates subsequent monolithic epitaxy of single-crystallineγ-In2Se3 at low temperature. Strong room-temperature photoluminescence and moderate optoelectronic response are observed in the achieved γ-In2Se3 thin films.  相似文献   

18.
Deposition of ZnO Films on Freestanding CVD Thick Diamond Films   总被引:5,自引:0,他引:5       下载免费PDF全文
For ZnO/diamond structured surface acoustic wave (SAW) filters, performance is sensitively dependent on the quality of the ZnO films. In this paper, we prepare highly-oriented and fine grained polycrystalline ZnO thin films with excellent surface smoothness on the smooth nucleation surfaces of freestanding CVD diamond films by metal organic chemical vapour deposition (MOCVD). The properties of the ZnO films are characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL) spectrum. The influences of the deposition conditions on the quality of ZnO films are discussed briefly. ZnO/freestanding thick-diamond-film layered SAW devices with high response frequencies are expected to be developed.  相似文献   

19.
Theoretical study of ZnO adsorption and bonding on Al_2O_3(0001) surface   总被引:1,自引:0,他引:1  
Sapphire (α-Al2O3) and silicon (Si) are widely applied as the substrates of the highquality ZnO thin films prepared by pulse laser deposition (PLD) and molecule beamepitaxy (MBE) technology. The adhesion, diffusivity, and bonding of the particles on thesubstrates play a significant role in the forming and initial growing of nucleation for filmgrowth, and directly influence the quality of the entire thin films[1]. No sufficient studiesand experiments are available on the surface atomic str…  相似文献   

20.
The boron nitride (BN) films containing cubic boron nitride (c-BN) and hexagonal boron nitride (h-BN) were prepared by radio frequency a ssisted thermal filament chemical vapor deposition. The stress and strain in BN films were investigated by X-ray diffraction analysis using the sin2 ψ method. The results showed that both c-BN and h-BN in the same film have similar values of elastic strain, however, the compressive stress in c-BN is much greater than that in h-BN for the same film. Both stress and strain gradually decre ased with the increase of substrate temperature (Ts). The effective stress in the films calculated by the effective stress model increased with the increase of Ts. Furthermore, the dependence of effective stress in the films on Ts was also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号