首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concept of patchy particles is revolutionizing the research field of colloidal assembly, by the design of particles whose surface is purposely patterned to promote attractive interactions with their neighbors in limited number, and in privileged and programmed directions. The idea of magnetic patches makes it possible to imagine assemblies not only spontaneous by simple magnetic coupling but also triggered and canceled at will due to external magnetic fields. This review shows that studies published until now mainly deal with particles with a single magnetic patch, often called Janus particles. The very diverse synthetic routes have been brought together into four main strategies, covering the size range from 100 nm to 100 µm. Their assembly capacity is described both from experimental and simulation viewpoints. The orientation of the magnetic moment of the patch and its decentering extent with respect to the particle are the key parameters for controlling the morphology of clusters, loops, staggered chains, double chains, helices, microtubes, etc. The review offers some perspectives to generalize these studies to multipatch particles, examples of which are still too rare, and to make assemblies sustainable, especially after the removal of the structuring magnetic fields.  相似文献   

2.
We present an original polarimetric method to study the magnetic relaxation of ferrofluids. The Brownian relaxation of three ferrofluids with Fe2CoO4 particles dispersed in water, dibutyl phthalate and diethylene glycol is presented and compared with the theoretical model of Debye adapted to the magnetism. The results show that this system has a good sensitivity even at low volume concentration of particles and under low ac magnetic field. The analysis of the relaxation parameters leads to a good estimation of particles diameter and put in evidence a distribution of relaxation time.  相似文献   

3.
Single particle magnetization and size measurements of micron and nano sized, magnetic particles were made using a previously described device referred to as Cell Tracking Velocimetry, CTV. Three types of commercially available, and commonly used, magnetic particles were studied in this report. While the CTV instrument provides individual particles measurements, the average magnetization and size measurements were found to have reasonable agreements with reported values from instruments which measure bulk values. In addition, the CTV instrument, using electromagnets, can also determine magnetization curves, which also proved to have reasonable agreement with other published studies. Given that magnetic separation and analysis technology is dependent on the quality of the magnetic particles used, studies such as this one using CTV provide not only average data, but also provides information with respect to the distribution of the properties such as magnetization and size. For example, the spread of the data in magnetic and settling velocities were found to be predominately due to the size distribution of the analyzed particles.  相似文献   

4.
We have investigated aggregation phenomena of a colloidal dispersion composed of magnetic plate-like particles by means of Monte Carlo simulations. Such plate-like particles have been modelled as disk-like particles with magnetic moment normal to the particle axis at the particle centre, with the section shape of a spherocylinder. The main objective of the present study is to clarify the influences of the magnetic field strength and magnetic interactions between particles on particle aggregation phenomena. We have concentrated our attention on a quasi-2D system from an application point of view such as the development of surface quality changing technology using such magnetic plate-like particles. A magnetic field is applied along the direction perpendicular to the plane of the monolayer. Internal structures of particle aggregates are discussed quantitatively in terms of radial distribution and orientational pair correlation functions. For the case of strong magnetic interactions between particles, particles form long column-like clusters with their magnetic moments alternating in direction between the neighbouring particles. These tendencies appear under circumstances of a weak applied magnetic field. However, as the magnetic field strength increases, particles incline towards the magnetic field direction, so that particles do not form such clusters.  相似文献   

5.
We study a rechargeable lithium-ion battery that uses a many-particle FePO4 electrode to reversibly store lithium atoms. This process is accompanied by a phase transition and charging/discharging run along different paths, so that hysteretic behavior is observed.Although there are experimental studies suggesting that the overall behavior of the battery is a many-particle effect, most authors exclusively describe the phase transition within a single particle model of the electrode.In this work, we study in detail a many-particle model for the electrode. The model is capable to describe a kind of phase transition where each individual particle of the electrode is homogeneous. It will be shown that the particles are either in the first phase or in the second phase. This phenomenon is due to the non-monotone relation between the chemical potential and the lithium mole fraction of a single particle.The pressure-radius relation of a spherical elastic rubber balloon also exhibits non-monotone behavior. In fact, a system of many interconnected balloons behaves correspondingly to an electrode consisting of many storage particles. The analogy between the two systems is important, because the predictions of the many-particle model can easily be tested with rubber balloons of macroscopic size than with an ensemble of microscopically small (FePO4) particles.  相似文献   

6.
A mathematical model is presented for predicting magnetic targeting of multifunctional carrier particles that are designed to deliver therapeutic agents to malignant tissue in vivo. These particles consist of a nonmagnetic core material that contains embedded magnetic nanoparticles and therapeutic agents such as photodynamic sensitizers. For in vivo therapy, the particles are injected into the vascular system upstream from malignant tissue, and captured at the tumor using an applied magnetic field. The applied field couples to the magnetic nanoparticles inside the carrier particle and produces a force that attracts the particle to the tumor. In noninvasive therapy, the applied field is produced by a permanent magnet positioned outside the body. In this paper, a mathematical model is developed for predicting noninvasive magnetic targeting of therapeutic carrier particles in the microvasculature. The model takes into account the dominant magnetic and fluidic forces on the particles and leads to an analytical expression for predicting their trajectory. An analytical expression is also derived for predicting the volume fraction of embedded magnetic nanoparticles required to ensure capture of the carrier particle at the tumor. The model enables rapid parametric analysis of magnetic targeting as a function of key variables including the size of the carrier particle, the properties and volume fraction of the embedded magnetic nanoparticles, the properties of the magnet, the microvessel, the hematocrit of the blood and its flow rate.  相似文献   

7.
Summary The energy deposition by slowing-down of energetic ionizing particles in the atmosphere enhances the production of constituent concentration which perturbs and eventually destroys the ozone (OZ) layer. Near the Brazilian anomaly region the cosmic-ray (CR) intensity varies greatly due to the magnetic activity in that region. In order to study these variations, stratospheric balloons were launched to measure, simultaneously, the CR and OZ fluxes in the atmosphere. The Fourier-analysed data collected during the flight on April 22, 1989 show evidences of a short-period variation for both fluxes measured. Attempts to verify the physical mechanisms which associate the CR change with the OZ one are not conclusive due to limited data observed on that event.  相似文献   

8.
The motion of dilute and concentrated dispersions of colloids by external electric or magnetic fields is discussed. Electrokinetics is studied for colloids in confinement, where the confining walls can be flat or rough. As an example for a rough wall superhydrophobic surfaces are chosen. It is shown that the reduced friction at the water-air interface is insufficient to enhance electro-osmosis. Magnetic particles are pulled through a crystalline matrix formed by nonmagnetic colloids to investigate local melting and recrystallization of a crystalline matrix. The average strain field is calculated and the reorganization processes are compared to those induced by shear fields. Using single domain, magnetically blocked particles of different shape and surface characteristics, the interplay between particles, their environment and an external field is investigated.  相似文献   

9.
The production method of magnetic suspension consisting of ferromagnetic particles dispersed in cedarwood oil is presented at the beginning of this article. Next, the set-up for microwaves generation using a klystron is described. The main part of this paper concerning microwave transmission and polarization during its passage in samples of the produced magnetic suspension placed in a magnetic field is based on the following parameters: induction of this field, filling factor of magnetic suspension by ferromagnetic particles, dimensions of particles, viscosity of liquid carrier, and ratio of the magnetic field changes. Conducted investigations show that microwaves are damped and polarized in these magnetic suspensions. Obtained results are discussed and observed effects are explained by ordering of ferromagnetic particles in magnetic suspension by applied magnetic field.  相似文献   

10.
This study refers to the effect of sodium polyacrylate concentration (1 to 5 mass %) and pH (10 to 12) on the synthesis of magnetic nanoparticles (magnetite?Cmaghemite) and their characterization by Mössbauer spectroscopy. The magnetic particles were obtained by coprecipitation method using iron chloride (II) and iron chloride (III) as precursor reagents and sodium polyacrylate as stabilizing agent. All samples showed Mössbauer broad resonance lines in typical doublet and sextets patterns of magnetite or maghemite with corresponding wide particle size distributions. The stability of magnetic particles was carried out by measuring particle sizes with dynamic light scattering (DLS). The z-average values for magnetic particles were in the range 24 to 590 nm and no significant change in size was observed on aging by leaving this material in air for 20 days. X-ray diffraction patterns showed characteristic peaks of the spinel structure and have an increase in their broadening as the pH decreases, effect that is dominated by the decrease in crystallite sizes. The nanoparticles showed to be magnetic at pH 12 and at room temperature.  相似文献   

11.
Magnetic interaction of paramagnetic Brownian submicron-sized particles is studied by optical tweezers technique. Correlation analysis allows one to extract magnetic interaction of two particles 0.4 μm in size, which are optically trapped at the distance of 3 μm one from each other and placed in a static magnetic field of 30 Oe, from the background of their Brownian motion. The magnetic interaction force is estimated to be of approximately 100 fN. Two configurations of the mutual orientation of the magnetic field vector and the line connecting two centers of optical traps are used in the experiment. For field vector orientation parallel/perpendicular to this line, the magnetic interaction is detected by the cross-correlation function increase/decrease in comparison with the absence of magnetic field on the time scales of 1 ms.  相似文献   

12.
The exact solution of the Corben–Schwinger equations is obtained for spin-1 particles without an anomalous magnetic moment in a uniform magnetic field. The exact Hamiltonian in the Foldy–Wouthuysen representation is derived. The conservation of projections of the polarization operator onto four directions is proved. The approximate conservation of projections of this operator onto the horizontal axes of the cylindrical coordinate system is established. For spin-1 particles with the anomalous magnetic moment, the Hamiltonian in the Foldy–Wouthuysen representation is deduced within first order terms in the Planck constant. Dynamics of spin-1 particles with the anomalous magnetic moment and their spins in the strong uniform magnetic field are calculated.  相似文献   

13.
Quarks are color charged particles. Due to their motion there is a strong possibility of generation of color magnetic field. It is shown that however hadrons are color singlet particles they may have non-zero color magnetic moment. Due to this color magnetic moment hadrons can show color interaction. In this paper we have studied the chromomagnetic properties of nuclear matter.  相似文献   

14.
A new device, MAGCLA™, which is capable to separate and classify particles according to their magnetic susceptibility, is being developed by the authors. In a previous article the equations of movement for magnetic particles in this new device were analyzed and in this paper the limiting conditions for the different variables and equations of movement are presented for the magnetic particles case. The knowledge of these limiting conditions is important as they set the boundaries within which we may manipulate the MAGCLA™’s operating and design variables.  相似文献   

15.
Interactions between magnetic nanoparticles can lead to superferromagnetic ordering, i.e. ordering of their magnetic moments at low temperatures. The use of a simple mean field theory, describing the temperature dependence of the order parameter is discussed. This model is found to give excellent fits to experimental results. In systems of particles with pure dipole interactions, the degree of ordering depends critically on the geometrical configuration of the particles. The application of superferromagnetic nanostructures for magnetic refrigeration is also discussed.  相似文献   

16.
Compared with the top-down lithographic techniques, bottom-up chemical synthesis and self-assembly approaches offer much more flexibilities in creating magnetic nanostructures with controlled size, shape, composition and physical properties. This review summarizes some of the latest developments in this field, with emphasis mainly on transition metals, their alloys and metal oxide nanoparticles. The focus is directed towards the conditions of individual particles as well as large assemblies of particles through colloidal chemistry. Furthermore, some of the future directions in nanomagnetism from the perspective of physical chemists is also presented.  相似文献   

17.
Mechanism of structure formation in bidispersed colloids is important for its physical and optical properties. It is microscopically observed that the mechanism of chain formation in magnetic nanofluid based magnetorheological (MR) fluid is quite different from that in the conventional MR fluid. Under the application of magnetic field the magnetic nanoparticles are filled inside the structural microcavities formed due to the association of large magnetic particles, and some of the magnetic nanoparticles are attached at the end of the chains formed by the large particles. The dipolar energy of the large particles in a magnetic nanofluid matrix becomes effective magnetic permeability (μeff) times smaller than that of the neutral medium. Inclusion of magnetic nanoparticles (∼10 nm) with large magnetic particles (∼3-5 μm) restricts the aggregation of large particles, which causes the field induced phase separation in MR fluids. Hence, nanofluid based MR fluids are more stable than conventional MR fluids, which subsequently increase their application potentiality.  相似文献   

18.
We present a morphological, structural, and magnetic characterization of Co nanoparticles (mean diameter of 10.3 ± 1.8 nm) grown using a gas aggregation source and embedded in a silicon oxide matrix by sequential deposition of nanoparticles and silicon oxide. We show that the Co nanoparticles ??soft-land?? on the substrates and suffer a moderate oxidation in contact with the silicon oxide. Despite this moderate oxidation, it is found that, at room temperature, the magnetic volume of the resulting nanoparticles is below the superparamagnetic limit. The results presented in this article are compatible with the presence of an assembly of magnetically independent particles that also display a moderate exchange bias at low temperature.  相似文献   

19.
Stationary solutions of the Einstein-Maxwell equations have recently been given corresponding to charged, spinning magnetic matter. In this paper a solution for two particles of such matter is given. In general it contains a singularity between the particles.  相似文献   

20.
The ground state of an array of small single-domain magnetic particles having perpendicular anisotropy and forming a square two-dimensional lattice is studied in the presence of a magnetic field. The stability of some basic states with respect to nonuniform perturbations is analyzed in a linear approximation, and analytical model calculations and numerical simulation are used for an analysis. The entire set of states at various anisotropy constants and magnetic fields is considered when a field is normal to the array plane. Two main classes of states are possible for an infinite system, namely, collinear and noncollinear states. For collinear states, the magnetic moments of all particles are normal to the array plane. At a sufficiently high anisotropy, a wide class of collinear states exists. At low fields, a staggered antiferromagnetic order of magnetic moments takes place. An increase in the magnetic field causes an unsaturated state, and this state transforms into a saturated (ferromagnetic) state with a parallel orientation of the magnetic moments of all particles at a sufficiently high field. At a lower anisotropy, the ground state of the system is represented by noncollinear states, which include a complex four-sublattice structure for the components of the magnetic moments in the array plane and a nonzero projection of the magnetic moments of the particles onto the field direction. A phase diagram is plotted for the states of an array of anisotropic magnetic particles in the anisotropy constant-magnetic field coordinates. For a finite array of particles, sample boundaries are shown to play a significant role, which is particularly important for noncollinear states. As a result of the effect of the boundaries at a moderate field or anisotropy, substantially heterogeneous noncollinear states with a heterogeneity size comparable with the sample size can appear in the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号