共查询到20条相似文献,搜索用时 0 毫秒
1.
随着社会经济发展,人们越来越重视身体健康,对医疗设备的智能化、便携性、准确性要求越来越高。在此背景下,可穿戴生物传感器的市场需求不断提升。智能纤维和纺织品能够满足透气性和可穿戴性的要求,应用在可穿戴生物传感器中能够实时监测人们的身体状况,包括脉搏、呼吸、肢体运动等生命体征监测,汗液、唾液等成分分析和呼出物的检测。相比于传统的生物传感器,基于智能纤维和纺织品的可穿戴生物传感器可用于现场即时监测,从疾病预防、改善临床结果和生活质量到提高生产力、减轻医疗负担和降低医疗成本都发挥着重要作用。在这里,本文主要介绍了近几年智能纤维和纺织品在可穿戴生物传感器中的应用,按照生命体征监测、体液分析和呼出物检测这三个方面,对其传感策略例如比色传感、荧光传感、压电式传感等进行介绍。最后,我们对智能纤维与纺织品在可穿戴生物传感器中的应用状况以及面临的问题进行总结,并对其在可穿戴生物传感器的未来发展进行展望。 相似文献
2.
Guangyu Du Xiaozhi Bao Shenghuang Lin Huan Pang Shivananju Bannur Nanjunda Qiaoliang Bao 《Molecules (Basel, Switzerland)》2021,26(15)
In recent years, polaritons in two-dimensional (2D) materials have gained intensive research interests and significant progress due to their extraordinary properties of light-confinement, tunable carrier concentrations by gating and low loss absorption that leads to long polariton lifetimes. With additional advantages of biocompatibility, label-free, chemical identification of biomolecules through their vibrational fingerprints, graphene and related 2D materials can be adapted as excellent platforms for future polaritonic biosensor applications. Extreme spatial light confinement in 2D materials based polaritons supports atto-molar concentration or single molecule detection. In this article, we will review the state-of-the-art infrared polaritonic-based biosensors. We first discuss the concept of polaritons, then the biosensing properties of polaritons on various 2D materials, then lastly the impending applications and future opportunities of infrared polaritonic biosensors for medical and healthcare applications. 相似文献
3.
纸基生物传感器由于其具有成本低、操作方便、生物可降解、识别元件用量低等优点,近年来受到了广泛的关注。其中,以功能核酸作为识别元件的纸基荧光生物传感器具有较高的灵敏度、瞬时响应以及实时检测等特性,在便携式传感设备方面展现出巨大的潜力。此外,将核酸作为识别元件的纸基无细胞蛋白合成平台,通过条件合成的报告荧光蛋白可实现对病毒、重金属等目标物的特异性检测,具有良好的应用前景。首先,本文介绍了基于核酸的纸基荧光生物传感器的设计,特别是基于核酸的识别元件与纸基材料的结合方式。其次,总结了基于核酸的纸基荧光生物传感器在临床诊断、食品安全检测、环境污染物检测等不同领域的最新研究进展,讨论了其优势与局限性。最后,探讨了基于核酸的纸基荧光生物传感器的发展方向与应用前景,以期为相关领域的研究提供参考。 相似文献
4.
Daphika S Dkhar Rohini Kumari Supratim Mahapatra Divya Prof. Dr. Pranjal Chandra 《Electroanalysis》2023,35(2):e202200154
Wearable sensing devices have transformed the hourly analysis of events such as body signals and environmental risks into real-time monitoring in minutes or seconds. Wearable sensors have facilitated the ability to obtain useful data by monitoring the physiological parameters and activities of an aided and a healthy individual. Wearable devices employ detectable biomarkers in the human body, such as in tears, saliva, interstitial fluid, sweat, and so on. These can deliver relevant information on human health, online activity monitoring, and therapeutic treatments. This section outlines the significance of sample types and associated biomarkers as indicators in the development and manufacturing of wearable biosensors. We have emphasized the most recent advances of wearables based on skin-like and textile, giving attention to personalized health monitoring to record signals of motion and physiological and body fluid investigation. Furthermore, this review categorizes wearable biosensors based on the sensing mechanism, electrochemical, optical, and mechanical. Additionally, the recent wearables related to the detection of the newly havoc-causing pandemic, COVID-19, and the future perspective for the development of much more advanced and potent wearable biosensors have been highlighted. The final section highlights unmet difficulties and gaps in wearable sensors in personalized therapy. 相似文献
5.
6.
Smart textile fabrics have been widely investigated and used in flexible wearable electronics because of their unique structure, flexibility and breathability, which are highly desirable with integrated multifunctionality. Recent years have witnessed the rapid development of textile fiber-based flexible wearable devices. However, the pristine textile fibers still can't meet the high standards for practical flexible wearable devices, which calls for the development of some effective modification strategies. In this review, we summarize the recent advances in the flexible wearable devices based on the textile fibers, putting special emphasis on the design and modifications of textile fibers. In addition, the applications of textile fibers in various fields and the critical role of textile fibers are also systematically discussed, which include the supercapacitors, sensors, triboelectric nanogenerators, thermoelectrics, and other self-powered electronic devices. Finally, the main challenges that should be overcome and some effective solutions are also manifested, which will guide the future development of more effective textile fiber-based flexible wearable devices. 相似文献
7.
光纤表面等离子共振(Fiber optic surface plasmon resonance,FO-SPR)传感器由于体积小、易携带、抗电磁干扰等优点在生物、化学、医学及食品领域均具有广阔的应用前景。该文综述了光纤SPR传感器的结构、膜材料及其应用进展。其中终端反射式和在线传输式是光纤SPR传感器最重要的两种结构;最常用的膜材料包括金膜、银膜、复合膜和金属纳米颗粒。基于光纤SPR的实时检测、抗干扰能力强、可多通道检测等特点展望了其未来发展与应用前景。 相似文献
8.
Mayank Pathak Diksha Bhatt Rajesh Chandra Bhatt Bhashkar Singh Bohra Gaurav Tatrari Sravendra Rana Mahesh Chandra Arya Nanda Gopal Sahoo 《Chemical record (New York, N.Y.)》2024,24(1):e202300236
Supercapacitors (SCs) are potentially trustworthy energy storage devices, therefore getting huge attention from researchers. However, due to limited capacitance and low energy density, there is still scope for improvement. The race to develop novel methods for enhancing their electrochemical characteristics is still going strong, where the goal of improving their energy density to match that of batteries by increasing their specific capacitance and raising their working voltage while maintaining high power capability and cutting the cost of production. In this light, this paper offers a succinct summary of current developments and fresh insights into the construction of SCs with high energy density which might help new researchers in the field of supercapacitor research. From electrolytes, electrodes, and device modification perspectives, novel applicable methodologies were emphasized and explored. When compared to conventional SCs, the special combination of electrode material/composites and electrolytes along with their fabrication design considerably enhances the electrochemical performance and energy density of the SCs. Emphasis is placed on the dynamic and mechanical variables connected to SCs′ energy storage process. To point the way toward a positive future for the design of high-energy SCs, the potential and difficulties are finally highlighted. Further, we explore a few important topics for enhancing the energy densities of supercapacitors, as well as some links between major impacting factors. The review also covers the obstacles and prospects in this fascinating subject. This gives a fundamental understanding of supercapacitors as well as a crucial design principle for the next generation of improved supercapacitors being developed for commercial and consumer use. 相似文献
9.
10.
随着环境污染、资源枯竭和医疗健康等问题的加剧,研发同时满足特定使用性能、安全性及可再生性的新型材料成为当前的发展趋势.而丝素蛋白材料正是以天然蚕丝为基本原材料,经一定的加工和功能化而形成的具有特殊结构、独特性能和广泛应用的生物质材料,近年来在生物医药、生物电子、智能传感等领域展现出巨大的应用潜力.本专论总结了丝素蛋白纤维及功能化材料的最新成果,结合本课题组相关工作,重点阐述了再生丝素蛋白纤维的仿生制备、生物医用支架的构筑与功能化、智能电子材料的设计以及天然多功能蚕丝及其构筑基元制备的研究进展,以期为高性能丝素蛋白材料的设计与构筑提供指导和借鉴. 相似文献
11.
可穿戴式微流控芯片在体液检测和药物递送中的研究进展 总被引:1,自引:0,他引:1
可穿戴式微流控芯片在医疗、体育、军事等领域具有广泛的应用潜力,利用可穿戴式微流控芯片对人体体液进行实时监测,可以通过芯片与皮肤的接触,方便地对汗液、泪液、唾液等体液进行采集,并分析和传输数据,可以实时获取汗液pH值以及血糖、乳酸盐、钠/钾离子、钙离子、重金属等的含量的信息,这些体液信息对于个体生命体征的实时监测和疾病诊断有着重要的指示性作用.本文介绍了近年来可穿戴式微流控芯片在体液检测和药物递送方面的最新研究进展,以及利用可穿戴式微流控芯片进行生命体征监测的应用案例.本文还简要介绍了利用可穿戴式微流控芯片进行精准药物递送的最新研究动向和应用进展,并对可穿戴式微流控芯片发展过程可能遇到的问题进行了分析,对未来融合发展的前景进行了展望. 相似文献
12.
热电材料能够将热能与电能直接相互转化,在废热回收及绿色制冷领域中具有巨大的应用潜力。相比无机块体热电材料,柔性热电材料具有可弯折、体积小、质量轻等优点,还适用于制备可穿戴电子设备。近10年来,基于导电高分子、碳材料和无机纳米材料等的柔性复合热电材料及器件逐渐成为炙手可热的研究领域,受到了业内广泛的关注。本文综述了近年来基于不同材料体系的柔性热电材料及器件的研究进展、存在的亟待解决的问题和未来的发展方向。大量研究结果表明,材料的热电性能可以通过化学合成和分子设计战略、形貌控制及掺杂技术等进行有效的调控。研发满足实际应用需要的先进柔性热电材料仍然极具挑战性。 相似文献
13.
In this review, laser-induced graphene (LIG) -based electrodes are discussed by covering such essential areas, as a characterization of LIG material properties necessary for electroanalysis, including data on LIG sheet resistance, wettability, spatial resolution, electrochemical characteristics, as well as correlations of “process” - “properties” - “electroanalytical characteristics”of LIG-electrodes. Moreover, typical and innovative LIG-based electrodes designs for electroanalytical applications, including combined multi-analyte multimodal wearable sensors, interdigitated electrodes, are shown. The essential data related to LIG in electroanalysis are summarized in tables. The authors also discussed recent LIG-based electroanalytical applications. Close attention has been paid to LIG glucose sensors and biosensors. 相似文献
14.
Two-dimensional photocatalytic materials have potential applications in the fields of environmental purification and energy conversion owing to their rich surface active sites, unique geometric structures, adjustable electronic structures, and good photocatalytic activities. At present, the main two-dimensional photocatalytic materials include metal oxides, metal composite oxides, metal hydroxides, metal sulfides, bismuth-based materials, and non-metallic photocatalytic materials. The absorption of photons in bulk materials or nanoparticles is often limited by the transmittance and reflection at the grain boundary, while the two-dimensional structure can provide a large specific surface area and abundant surface low-coordination atoms to obtain more UV visible light. In addition, the smaller atomic thickness of two-dimensional photocatalytic materials can shorten the carrier migration distance. Thus, in two-dimensional photocatalytic materials, the carriers generated in the interior migrate to the surface faster than that in the bulk materials, which can reduce the recombination of photogenerated carriers and facilitate the photocatalytic reaction. For the surface redox reaction, the two-dimensional structure can provide more abundant surface-active sites to accelerate the reaction process. Additionally, when the thickness is reduced to the atomic scale, the escape energy of atoms is relatively small, thereby increasing the surface defects, which is helpful for the adsorption and activation of target molecules. Thus, the synthesis methods and performance enhancement strategies of two-dimensional photocatalytic materials have been developed rapidly. The former strategies mainly focus on the adjustment of morphology and geometric structure characteristics, which cannot fully meet the design requirements of efficient and stable photocatalysts. The photocatalytic performance and stability can be improved by surface design to construct abundant active sites and adjust the electronic structure. Research on the reaction mechanism of photocatalysis can help us understand the demand for photocatalytic structure characteristics in different reactions, thereby guiding the design of photocatalysts. In this paper, the advances in surface design and electronic structure regulation strategies of two-dimensional photocatalytic materials are reviewed from three aspects: light absorption; charge separation; and active sites, including element doping, heterojunction design, defect construction, single atom modification, and plasmonic metal loading. The effects on the reaction mechanism for typical air pollutant purification by regulating the electronic structure of two-dimensional photocatalytic materials are summarized. Finally, the problems and challenges associated with the development of two-dimensional photocatalytic materials are analyzed and discussed.
相似文献
15.
自2004年被成功制备后,石墨烯因其独特迷人的性质在近十几年来备受关注,同时也引发了二维纳米材料的研究热潮。单原子层厚度的二维结构赋予石墨烯非同寻常的光学、电子学、磁学及力学等性质,使得石墨烯在生物学、医学、化学、物理学和环境科学等多个领域展现出极大的应用潜力。制得注意的是,石墨烯在应用时通常需要进行功能化,调节其组成、大小、形状和结构等,以便于加工处理或满足不同的应用需求。石墨烯功能化方法多样,功能化产物也是种类繁多。然而,到目前为止,石墨烯功能化产物并没有系统全面的分类和精确的定义。因此,本文在系统总结现有石墨烯功能化研究的基础上,给出了石墨烯功能化产物的系统分类、各类的精确定义和相应的制备策略,并通过典型示例进行了详细地阐述。石墨烯功能化的产物统称为“功能化石墨烯材料”,分为两类:“功能化石墨烯”和“功能化石墨烯复合材料”。功能化石墨烯材料的制备可由“自上而下”和“自下而上”两种策略实现。制备策略的选择取决于应用需求。系统分类、精确命名和制备策略的归纳必将有助于功能化石墨烯材料的进一步发展。 相似文献
16.
John Bentley Dr. Salil Desai Dr. Bishnu Prasad Bastakoti 《Chemistry (Weinheim an der Bergstrasse, Germany)》2021,27(36):9241-9252
Tungsten oxide (WO3) has received ever more attention and has been highly researched over the last decade due to its being a low-cost transition metal semiconductor with tunable, yet widely stable, band gaps. This minireview briefly highlights the challenges in the design and synthesis of porous WO3 including methods, precursors, solvent effects, crystal phases, and surface activities of the porous WO3 base material. These topics are explored while also drawing a connection of how the morphology and crystal phase affect the band gap. The shifts in band gap not only impact the optical properties of tungsten but also allow tuning to operate on different energy levels, which makes WO3 highly desirable in many applications such as supercapacitors, batteries, solar cells, catalysts, sensors, smart windows, and bioapplications. 相似文献
17.
Ratiometric Electrochemistry: Improving the Robustness,Reproducibility and Reliability of Biosensors
Electrochemical biosensors are an increasingly attractive option for the development of a novel analyte detection method, especially when integration within a point-of-use device is the overall objective. In this context, accuracy and sensitivity are not compromised when working with opaque samples as the electrical readout signal can be directly read by a device without the need for any signal transduction. However, electrochemical detection can be susceptible to substantial signal drift and increased signal error. This is most apparent when analysing complex mixtures and when using small, single-use, screen-printed electrodes. Over recent years, analytical scientists have taken inspiration from self-referencing ratiometric fluorescence methods to counteract these problems and have begun to develop ratiometric electrochemical protocols to improve sensor accuracy and reliability. This review will provide coverage of key developments in ratiometric electrochemical (bio)sensors, highlighting innovative assay design, and the experiments performed that challenge assay robustness and reliability. 相似文献
18.
Electrochemical Detection of Pathogenic Bacteria—Recent Strategies,Advances and Challenges 下载免费PDF全文
《化学:亚洲杂志》2018,13(19):2758-2769
Bacterial infections represent one of the leading causes of mortality worldwide, nevertheless the design and development of rapid, cost‐efficient and reliable detection methods for pathogens remains challenging. In recent years, electrochemical sensing methods have gained increasing attention for the detection of pathogenic bacteria, due to their increasingly competitive sensitivity. However, combining sensitivity with cost efficiency, high selectivity and a facile working procedure in a portable device is difficult. The presented review provides a summary of biosensing strategies for bacteria, published since 2015, by covering significant achievements towards custom‐designed portable point‐of‐care devices. Herein, the direct chemical recognition of bacteria via enzyme activity or secretion products, as well as their detection at various electrode surfaces and materials, such as nanomaterials, indium tin oxide or paper‐based immunosensors, is discussed. Furthermore, newly established hyphenated sensing principles, incorporated into lab‐on‐a‐chip and microfluidic devices, are presented and remaining technical challenges and limitations are considered. 相似文献
19.
Safety and quality are key issues for the food industry. Consequently, there is growing demand to preserve the food chain and products against substances toxic, harmful to human health, such as contaminants, allergens, toxins, or pathogens. For this reason, it is mandatory to develop highly sensitive, reliable, rapid, and cost-effective sensing systems/devices, such as electrochemical sensors/biosensors. Generally, conventional techniques are limited by long analyses, expensive and complex procedures, and skilled personnel. Therefore, developing performant electrochemical biosensors can significantly support the screening of food chains and products. Here, we report some of the recent developments in this area and analyze the contributions produced by electrochemical biosensors in food screening and their challenges. 相似文献
20.
Direct in vivo measurements of neurometabolic markers in the brain with high spatio-temporal resolution, sensitivity, and selectivity is highly important to understand neurometabolism. Electrochemical biosensors based on microelectrodes are very attractive analytical tools for continuous monitoring of neurometabolic markers, such as lactate and glucose in the brain extracellular space at resting and following neuronal activation. Here, we assess the merits of a platinized carbon fiber microelectrode (CFM/Pt) as a sensing platform for developing enzyme oxidase-based microbiosensors to measure extracellular lactate in the brain. Lactate oxidase was immobilized on the CFM/Pt surface by crosslinking with glutaraldehyde. The CFM/Pt-based lactate microbiosensor exhibited high sensitivity and selectivity, good operational stability, and low dependence on oxygen, temperature, and pH. An array consisting of a glucose and lactate microbiosensors, including a null sensor, was used for concurrent measurement of both neurometabolic substrates in vivo in the anesthetized rat brain. Rapid changes of lactate and glucose were observed in the cortex and hippocampus in response to local glucose and lactate application and upon insulin-induced fluctuations of systemic glucose. Overall, these results indicate that microbiosensors are a valuable tool to investigate neurometabolism and to better understand the role of major neurometabolic markers, such as lactate and glucose. 相似文献