首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extraction of active constituents from natural sources in a green and efficient manner is considered an important field in the pharmaceutical industry. In recent years, deep eutectic solvents (DESs), a new type of green solvent, have attracted increasing attention. Therefore, we aimed to establish a green and high-efficiency extraction method for ginsenosides based on DESs. This study takes Panax ginseng as a model sample. Eighteen different DESs were produced to extract polar ginsenosides. Ultrasound-assisted extraction (UAE) was applied for simplicity and efficiency. A binary DES synthesized using choline chloride and urea at a proportion of 1:2 prepared by a heating stirring method is proven to be more effective than other solvents, such as the widely used 70% ethanol for the extraction of ginsenosides. Three variables that might affect the extraction, including the DES content in the extraction solvent, liquid/solid ratio, and ultrasound extraction time, were evaluated for optimization. The optimum extraction conditions for ginsenosides were determined as follows: DES water content of 20 wt%, liquid/solid ratio of 15 mL g−1, and an ultrasonic extraction time of 15 min. The extraction yield for the optimized method is found to be 31% higher than that for 70% ethanol, which achieves efficient extraction. This study shows that DESs are available to extract ginsenosides for use in traditional Chinese medicine. The discovery also contributes to further research into the green extraction of ginsenosides.  相似文献   

2.
Deep eutectic solvents (DESs) were applied as eco-friendly solvents in this study for the extraction of alkaloids from lotus leaf, including O-nornuciferine, N-nornuciferine, nuciferine and roemerine. A series of hydrophilic and hydrophobic DESs with different hydrogen bond donors and a acceptors were synthesized and screened for a suitable DESs for extraction of alkaloids from lotus leaf. The study results showed that the hydrophilic DES with choline chloride and propanediol had the highest extraction yield. The main factors affecting the extraction efficiency—choline chloride–propanediol ratio, water content in deep eutectic solvents, solid–liquid ratio and extraction time—were investigated via a single-factor experiment. The optimized extraction conditions were 30% of water in choline chloride–propanediol (1:4) for heated extraction for 30 min and solid–liquid ratio 1:100 g/ml. Under optimum conditions, the extraction yields of O-nornuciferine, N-nornuciferine, nuciferine and roemerine were 0.069, 0.152, 0.334 and 0.041 g/100 g respectively, which were higher than those of methanol in acidified aqueous solution. This study suggests considerable potential for DESs as promising materials for the green and efficient extraction solvents for bioactive alkaloids from natural sources.  相似文献   

3.
Recently, deep eutectic solvent (DES) or ionic liquid (IL) analogues have been considered as the newest green solvent, demonstrating the potential to replace harsh volatile organic solvents. DESs are mainly a combination of two compounds: hydrogen bond acceptor (HBA) and hydrogen bond donor (HBD), which have the ability to interact through extensive hydrogen bonds. A thorough understanding of their physicochemical properties is essential, given their successful applications on an industrial scale. The appropriate blend of HBA to HBD can easily fine-tune DES properties for desired applications. In this context, we have reviewed the basic information related to DESs, the two most studied physicochemical properties (density and viscosity), and their performance as a solvent in (i) drug delivery and (ii) extraction of biomolecules. A broader approach of various factors affecting their performance has been considered, giving a detailed picture of the current status of DESs in research and development.  相似文献   

4.
In this study, a green and effective extraction method was proposed to extract two main compounds, ginsenosides and polysaccharides, from American ginseng by combining deep eutectic solvents (DESs) with aqueous two-phase systems. The factors of type of DESs, water content in DESs, the solid–liquid ratio, extraction temperature, and extraction time were studied in the solid–liquid extraction. Then, the aqueous two-phase system (DESs-ethylene oxide–propylene oxide (EOPO)) and salty solution exchange (EOPO-salty solution) was applied for the purification of polysaccharides. The content of the polysaccharides and ginsenosides were analyzed by the anthrone–sulfuric acid method and HPLC method, which showed that the extraction efficiency of deep eutectic solvents (DESs) was better than conventional methods. Moreover, the antioxidant activities of ginseng polysaccharides and their cytotoxicity were further assayed. The advantages of the current study are that, throughout the whole extraction process, we avoided the usage of an organic reagent. Furthermore, the separated green solvent DESs and EOPO could be recovered and reused for a next cycle. Thus, this study proposed a new, green and recyclable extraction method for extracting ginsenosides and polysaccharides from American ginseng.  相似文献   

5.
《Electrophoresis》2018,39(8):1111-1118
Novel magnetic molecularly imprinted polymers (MMIPs) with multiple‐template based on silica were modified by four types of deep eutectic solvents (DESs) for the rapid simultaneous magnetic solid‐phase extraction (MSPE) of tanshinone Ⅰ, tanshinone ⅡA, and cryptotanshinone from Salvia miltiorrhiza bunge; glycitein, genistein, and daidzein from Glycine max (Linn.) Merr; and epicatechin, epigallocatechin gallate, and epicatechin gallate from green tea, respectively. The synthesized materials were characterized by Fourier transform infrared spectroscopy and field emission scanning electron microscopy. Single factor experiments were to explore the relationship between the extraction efficiency and four factors (the sample solution pH, amount of DESs for modification, amount of adsorbent, and extraction time). It was showed that the DES4‐MMIPs have better extraction ability than the MMIPs without DESs and the other three DESs‐modified MMIPs. The best extraction recoveries with DES4‐MMIP were tanshinone Ⅰ (85.57%), tanshinone ⅡA (80.58%), cryptotanshinone (92.12%), glycitein (81.65%), genistein (87.72%), daidzein (92.24%), epicatechin (86.43%), epigallocatechin gallate (80.92%), and epicatechin gallate (93.64%), respectively. The novel multiple‐template MMIPs materials modified by DES for the rapid simultaneous MSPE of active compounds were proved to reduce the experimental steps than single‐template technique, and increase the extraction efficiency.  相似文献   

6.
Guizhen Li 《Analytical letters》2017,50(12):1926-1938
Five deep eutectic solvents (DESs) were synthesized with choline chloride and glycerol at ratios from 1:1 to 1:5 and used to extract ferulic acid from wheat bran. The DES with choline chloride:glycerol at a 1:2 molar ratio (DES-2) provided the highest extraction yield. The optimal extraction conditions for DES-2 were obtained using response surface methodology with a yield of 5.86?mg?·?g?1 ferulic acid. The DES-2 was used to modify silica gel and purify ferulic acid from wheat bran by solid-phase extraction (SPE). The yields were compared for silica gel and silica gel modified with ionic liquid. The recoveries for ferulic acid were 64.1, 89.7, and 80.3%, respectively. Silica gel modified with DES-2 provided the highest recovery. The materials were characterized by infrared spectroscopy and scanning electron microscopy. The DESs were used as extraction solvents and to modify silica gel for SPE, expanding their use in the isolation of ferulic acid from wheat bran.  相似文献   

7.
《Analytical letters》2012,45(2):262-272
Abstract

Hydrophobic deep eutectic solvents (DESs) were synthesized and developed for the preconcentration of three chlorophenols from wastewater by dispersive liquid–liquid microextraction (DLLME). The analyte concentrations were determined by high-performance liquid chromatography (HPLC). The hydrophobic DESs were prepared with the combination of hydrogen bond donors of decanoic acid or octanoic acid with different hydrogen bond acceptors of quaternary ammonium salts of tetrabutylammonium chloride, tetraoctylammonium chloride, methyltrioctylammonium chloride, and tetraheptylammonium chloride). Following the study of the stability and characterization by Fourier transform infrared spectroscopy, the hydrophobic DESs were developed as extractants and employed for the removal of 4-chlorophenol (4-CP), 2,4-dichlorophenol (2,4-DCP), and 2,4,6-trichlorophenol (2,4,6-TCP) from wastewater. Using hydrophobic DESs as the microextraction solvents, several key parameters were optimized, including the type and volume of the hydrophobic DES, pH, and time of the extraction procedure. Under the optimized conditions, good recoveries from 90.8% to 93.0% were obtained for the three chlorophenols. The limits of detection were less than 0.05?µg/mL with relative standard deviations between 1.8% and 3.1%. The method was applied for the isolation and determination of synthetic chlorophenols in wastewater.  相似文献   

8.
The liquid structures of deep eutectic solvents (DESs) based on hydrated metal halides and their application as electrolytes have been widely studied. However, little attention has been paid to the direct use of this type of DES in the preparation of micro‐/nanomaterials. Herein, an FeCl3 ? 6 H2O/urea DES was used in the one‐step synthesis of NiFe‐LDH_D with a nanoflower morphology. In alkaline media, this catalyst promoted excellent electrocatalytic activity for the oxidation of urea at potential of 1.32 V (vs. RHE) and for the oxygen‐evolution reaction at a potential of 1.39 V to achieve a current density of 10 mA cm?2. These results were superior to the results with NiFe‐LDH/NF that was obtained from an aqueous solution of FeCl3, as well as most of the previously reported transition‐metal catalysts. Furthermore, NiFe‐LDH_D/NF could be readily implemented as both a cathode and an anode for the electrolysis of urea and water splitting. The use of hydrated‐metal‐halide‐based DESs for the preparation of LDH catalysts through a dipping‐redox strategy should both enrich the research of DESs and offer guidance for the rational surface engineering of catalysts for the electrolysis of urea and overall water splitting with high performance.  相似文献   

9.
Amine absorption (or amine scrubbing) is currently the most established method for CO2 capture; however, it has environmental shortcomings and is energy-intensive. Deep eutectic solvents (DESs) are an interesting alternative to conventional amines. Due to their biodegradability, lower toxicity and lower prices, DESs are considered to be “more benign” absorbents for CO2 capture than ionic liquids. In this work, the CO2 absorption capacity of choline-chloride/levulinic-acid-based (ChCl:LvAc) DESs was measured at different temperatures, pressures and stirring speeds using a vapour–liquid equilibrium rig. DES regeneration was performed using a heat treatment method. The DES compositions studied had ChCl:LvAc molar ratios of 1:2 and 1:3 and water contents of 0, 2.5 and 5 mol%. The experimental results showed that the CO2 absorption capacity of the ChCl:LvAc DESs is strongly affected by the operating pressure and stirring speed, moderately affected by the temperature and minimally affected by the hydrogen bond acceptor (HBA):hydrogen bond donator (HBD) molar ratio as well as water content. Thermodynamic properties for CO2 absorption were calculated from the experimental data. The regeneration of the DESs was performed at different temperatures, with the optimal regeneration temperature estimated to be 80 °C. The DESs exhibited good recyclability and moderate CO2/N2 selectivity.  相似文献   

10.
汽车尾气中硫化物的排放所导致的酸雨和PM2.5等环境污染问题广受关注.各个国家和地区也相继制定了严格的标准来控制柴油中的含硫量.加氢脱硫工艺成熟,但是需要在高温高压下进行,并且柴油中二苯并噻吩及其衍生物的位阻效应使得加氢脱硫难以将其脱除.氧化脱硫作为加氢脱硫的补充技术,以其反应条件温和等优点成为脱硫研究的重要课题.作为离子液体类似物,低共熔剂不仅具有离子液体的优点,而且无毒、生物可降解、价格低廉,且制备过程简单,是一种绿色溶剂.低共熔剂作为萃取剂和催化剂用于柴油的氧化脱硫中,展现出非常好的应用前景.尽管在低共熔剂氧化脱硫体系中氢键发挥着重要的作用,但是关于低共熔剂组成,氢键强度与氧化脱硫反应活性三者之间关系的探究相对缺乏.本文以己内酰胺和草酸为原料,调节二者配比制备了一系列己内酰胺基低共熔剂.通过差示扫描量热法、傅里叶变换红外光谱、核磁共振氢谱以及热重分析对制备的低共熔剂进行表征,从而确定组成与氢键之间的关系.将制备的低共熔剂应用于氧化脱硫体系中,发现氧化脱硫率随着低共熔剂组成的变化而规律变化.此外,系统地研究了影响氧化脱硫效率的反应参数.结果表明,在优化的反应条件下,己内酰胺基酸性低共熔剂的脱硫率可以达到98%.该反应体系下,三种不同硫化物的脱除率按照以下顺序依次递减:二苯并噻吩4,6-二甲基二苯并噻吩苯并噻吩.实验数据与表征结果表明,在低共熔剂氧化脱硫体系中氢键相互作用影响脱硫效率,而氢键相互作用则可以通过调节低共熔剂的组成来改变.该结果为了解柴油深度脱硫机理提供了新的思路.  相似文献   

11.
The penetration mechanism of choline chloride-glycerol deep eutectic solvent (DES) through the stratum corneum (SC) as a potential solvent for a novel enhancer of protein penetration into the skin was investigated in a wide and small angle X-ray diffraction study. We found that DES penetrated through intercellular lipids but not the corneocytes. DES seemed to extract a portion of lipids of the short lamellae in the SC. Hydrated DES with a DES to water weight ratio of 9 to 1 (9DES-1H2O) showed the strongest interaction with the lipids in the SC compared with water, DES, and hydrated DESs with another weight ratio of DES to water (DES : water=8 : 2). In a skin penetration test with a fluorescently labelled lysozyme, 9DES-1H2O increased the amount of penetration through the SC by two-fold compared with HEPES buffer.  相似文献   

12.
Deep eutectic solvents (DESs)-based ultrasonic extraction of terpene trilactones (TTLs) from Ginkgo biloba leaves was efficiently developed. Sixteen DESs were prepared, and DESs composed of choline chloride-urea (ChCl-U) and betaine-ethylene glycol (BE-EG) gave higher TTL extraction yields than the present, most efficient solvent 70% ethanol. The extraction conditions were further optimized, and the optimum conditions were as follows: taking BE-EG containing 40% (w/w) water as the extraction solvent, 1:10 of G. biloba leaves powder-to-solvent ratio, and ultrasonic treatment at 45°C and 100?W for 20?min. A total extraction yield of 1.94?±?0.03?mg/g was obtained under the optimum conditions, which indicated that 99.37% of TTLs could be extracted from the G. biloba leaves powder by a single extraction. Moreover, the polyamide resin was used to recover the TTLs in DES extracting solution, and recovery yield of 95.1% was attained. Therefore, BE-EG containing 40% (w/w) water was a potential alternative solvent for TTLs extraction from G. biloba leaves.  相似文献   

13.
A HPLC–DAD/ESI–MS method has been developed and validated for the analysis of the most representative phenolic compounds in extra-virgin olive oil (EVOO) samples using a green extraction approach based on deep eutectic solvents (DESs) at room temperature. We examined ten DESs based on choline chloride and betaine in combination with different hydrogen bond donors comprising six alcohols, two organic acids, and one urea. Five phenolic compounds, belonging to the classes of secoiridoids and phenolic alcohols, were selected for the evaluation of extraction efficiency. A betaine-based DES with glycerol (molar ratio 1:2) was found to be the most effective for extracting phenolic compounds as compared to a conventional solvent. The optimization of the extraction method involved the study of the quantity of water to be added to the DES and evaluation of the sample-to-solvent ratio optimal condition. Thirty percent of water added to DES and sample to solvent ratio 1:1 (w/v) were selected as the best conditions. The chromatographic method was validated by studying LOD, LOQ, intraday and interday retention time precision, and linearity range. Recovery values obtained spiking seed oil sample aliquots with standard compounds at 5 and 100 μg/g concentration were in the range between 75.2% and 98.7%.  相似文献   

14.
Deep eutectic solvents (DESs) are promising green solvents for the extraction of compounds from food byproducts. Hazelnut (Corylus avellana L.) is one of the most commonly cultivated tree nuts worldwide. The skin represents one of the major byproducts of the hazelnut industry and accounts for 2.5% of the total hazelnut kernel weight. It is a rich source of phenolic compounds like flavan-3-ols, flavonols, dihydrochalcones, and phenolic acids. In this work, fifteen DESs based on choline chloride and betaine, with different compositions, were studied in order to test their phenolic compounds extraction efficiency through the determination of their total concentration via Folin–Ciocalteu assay. A qualitative analysis of extracted phenolic compounds was assessed by HPLC with UV and MS detection. Using the DES with the best extraction efficiency, a new ultrasound-assisted solid liquid extraction (UA-SLE) method was optimized though the response surface methodology (RSM), taking into account some extraction parameters. Efficient recovery of extracted phenolic compounds was achieved using a 35% water solution of choline chloride and lactic acid (molar ratio 1:2) as an extraction solvent, working at 80 °C and with a solid-to-solvent ratio of 1:25 gmL−1. The optimized conditions made it possible to recover 39% more phenolic compounds compared to a classic organic solvent.  相似文献   

15.
Natural deep eutectic solvents (DESs) dissolve simple metal oxides and are used as a reaction medium to synthesize spinel‐type ferrite nanoparticles MFe2O4 (M=Mg, Zn, Co, Ni). The best results for phase‐pure spinel ferrites are obtained with the DES consisting of choline chloride (ChCl) and maleic acid. By employing DESs, the reactions proceed at much lower temperatures than usual for the respective solid‐phase reactions of the metal oxides and at the same temperatures as synthesis with comparable calcination processes using metal salts. The method therefore reduces the overall required energy for the nanoparticle synthesis. Thermogravimetric analysis shows that the thermolysis process of the eutectic melts in air occurs in one major step. The phase‐pure spinel‐type ferrite particles are thoroughly characterized by X‐ray diffraction, diffuse‐reflectance UV/Vis spectroscopy, and scanning electron microscopy. The properties of the obtained nanoparticles are shown to be comparable to those obtained by other methods, illustrating the potential of natural DESs for processing metal oxides.  相似文献   

16.
ABSTRACT

The parabens, which are harmful to our bodies, are primarily utilized as preservatives in medicine, personal care products and cosmetics. A novel, more efficient, fast and cheap vortex-assisted liquid phase microextraction method based on deep eutectic solvents (DESs) was developed for the determination of parabens. The microextraction conditions were optimized using these solvents and the analytical parameters of the method were determined under optimal microextraction conditions. After extraction, the chromatographic separation of parabens was undertaken using high-performance liquid chromatography-UV detection. Experimental parameters, such as DES type, DES volume, dilution solvent volume and vortex extraction time were optimized. DES6 [ChCl-Ethylene glycol (1/2)] was the most suitable DES to work in this study. Detection limits for this method of 0.053 µg mL?1 for methylparaben, 0.061 µg mL?1 for ethylparaben, 0.049 µg mL?1 for propylparaben and 0.052 µg mL?1 for butylparaben were obtained. Correlation coefficients (R2) for a concentration range of 0.1–100 µg mL?1 were higher than 0.9992 and relative standard deviation (RSD) values below 2.91% at parabens concentration of 2.5 µg mL?1 were obtained. The results of spike/recovery values of real samples were greater than 84%. When compared with other methods, the main advantages include lower LOD, short extraction time, rapidity, repeatability and simplicity.  相似文献   

17.
Deep eutectic solvents (DESs) are green organic solvents that have broad prospects in the extraction of effective components of traditional Chinese medicine. This work employed the quantitative analysis of multi-components by a single marker (QAMS) method to quantitatively determine the six effective components of glycyrrhizic acid, liquiritin, isoliquiritin apioside, liquiritigenin, isoliquiritin, and glycyrrhetinic acid in Glycyrrhiza uralensis, which was used for comprehensive evaluation of the optimal extraction process by DESs. First, Choline Chloride: Lactic Acid (ChCl-LA, molar ratio 1:1) was selected as the most suitable DES by comparing the extraction yields of different DESs. Second, the extraction protocol was investigated by extraction time, extraction temperature, liquid-to-material ratio, molar ratio, and ultrasonic power. The Box–Behnken design (BBD) combined with response surface methodology (RSM) was used to investigate the optimal DES conditions. The result showed that the best DES system was 1.3-butanediol/choline chloride (ChCl) with the molar ratio of 4:1. The optimal extraction process of licorice was 20 mL/g, the water content was 30%, and the extraction time was 41 min. The comprehensive impact factor (z) was 0.92. At the same time, it was found that the microstructure of the residue extracted by the eutectic solvent was more severely damaged than the residue after the traditional solvent extraction through observation under an electron microscope. The DES has the characteristics of high efficiency and rapidity as an extraction solution.  相似文献   

18.
In this study, deep eutectic solvents (DESs) were synthesized using different ratios of choline chloride (CC) and dicarboxylic acids, and their eutectic temperatures were determined. The DES synthesized using CC and glutaric acid (GA), which showed a higher extraction efficiency than conventional solvents, was used for the extraction of flavonoid components from Pyrus ussuriensis leaves (PUL), and the extraction efficiency was evaluated using the response surface methodology. The flavonoid components rutin, hyperoside, and isoquercitrin were identified through high-performance liquid chromatography (HPLC), equipped with a Waters 2996 PDA detector, and HPLC mass spectrometry (LC-MS/MS) analyses. The optimum extraction was achieved at a temperature of 30 °C using DES in a concentration of 30.85 wt.% at a stirring speed of 1113 rpm and an extraction time of 1 h. The corresponding flavonoid content was 217.56 μg/mL. The results were verified by performing three reproducibility experiments, and a high significance, with a confidence range of 95%, was achieved. In addition, the PUL extracts exhibited appreciable antioxidant activity. The results showed that the extraction process using the DES based on CC and GA in a 1:1 molar ratio could effectively improve the yield of flavonoids from PUL.  相似文献   

19.
通过溶胶-凝胶法将脯氨酸基低共熔溶剂负载到硅胶上制得DESs/SG型催化剂。采用FT-IR、XRD、SEM/EDS及N2吸附-脱附等手段对催化剂的结构进行表征。结果发现,低共熔溶剂可以成功负载到硅胶中,硅胶的比表面积和孔体积有所下降,而孔径增大。以DESs/SG为吸附剂和催化剂,H2O2为氧化剂,研究其对模拟油中的二苯并噻吩的脱除性能,考察了低共熔溶剂负载量、反应温度、n(H2O2)/n(S)比、催化剂用量、含硫化合物的类型以及催化剂循环使用次数对脱硫效率的影响。结果表明,在最优脱硫条件下,DESs/SG对二苯并噻吩、4,6-二甲基二苯并噻吩和苯并噻吩的脱硫率分别为97%、96. 5%和46. 4%;催化剂循环使用九次后,催化脱硫效率仍高达89. 4%。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号