首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Studies utilizing selective pharmacological antagonists or targeted gene deletion have demonstrated that type 5 metabotropic glutamate receptors (mGluR5) are critical mediators and potential therapeutic targets for the treatment of numerous disorders of the central nervous system (CNS), including depression, anxiety, drug addiction, chronic pain, Fragile X syndrome, Parkinson's disease, and gastroesophageal reflux disease. However, in recent years, the development of positive allosteric modulators (PAMs) of the mGluR5 receptor have revealed that allosteric activation of this receptor may also be of potential therapeutic benefit for the treatment of other CNS disorders, including schizophrenia, cognitive deficits associated with chronic drug use, and deficits in extinction learning. Here we summarize the discovery and characterization of various mGluR5 PAMs, with an emphasis on those that are systemically active. We will also review animal studies showing that these molecules have potential efficacy as novel antipsychotic agents. Finally, we will summarize findings that suggest that mGluR5 PAMs have pro-cognitive effects such as the ability to enhance synaptic plasticity, improve performance in various learning and memory tasks, including extinction of drug-seeking behavior, and reverse cognitive deficits produced by chronic drug use.  相似文献   

2.
Learning and memory are essential to organism survival and are conserved across various species, especially vertebrates. Cognitive studies involving learning and memory require using appropriate model organisms to translate relevant findings to humans. Zebrafish are becoming increasingly popular as one of the animal models for neurodegenerative diseases due to their low maintenance cost, prolific nature and amenability to genetic manipulation. More importantly, zebrafish exhibit a repertoire of neurobehaviors comparable to humans. In this review, we discuss the forms of learning and memory abilities in zebrafish and the tests used to evaluate the neurobehaviors in this species. In addition, the pharmacological studies that used zebrafish as models to screen for the effects of neuroprotective and neurotoxic compounds on cognitive performance will be summarized here. Lastly, we discuss the challenges and perspectives in establishing zebrafish as a robust model for cognitive research involving learning and memory. Zebrafish are becoming an indispensable model in learning and memory research for screening neuroprotective agents against cognitive impairment.  相似文献   

3.
Sarsasapogenin is a natural steroidal sapogenin molecule obtained mainly from Anemarrhena asphodeloides Bunge. Among the various phytosteroids present, sarsasapogenin has emerged as a promising molecule due to the fact of its diverse pharmacological activities. In this review, the chemistry, biosynthesis and pharmacological potentials of sarsasapogenin are summarised. Between 1996 and the present, the relevant literature regarding sarsasapogenin was obtained from scientific databases including PubMed, ScienceDirect, Scopus, and Google Scholar. Overall, sarsasapogenin is a potent molecule with anti-inflammatory, anticancer, antidiabetic, anti-osteoclastogenic and neuroprotective activities. It is also a potential molecule in the treatment for precocious puberty. This review also discusses the metabolism, pharmacokinetics and possible structural modifications as well as obstacles and opportunities for sarsasapogenin to become a drug molecule in the near future. More comprehensive preclinical studies, clinical trials, drug delivery, formulations of effective doses in pharmacokinetics studies, evaluation of adverse effects and potential synergistic effects with other drugs need to be thoroughly investigated to make sarsasapogenin a potential molecule for future drug development.  相似文献   

4.
Cognitive disorders can be associated with brain trauma, neurodegenerative disease or as a part of physiological aging. Aging in humans is generally associated with deterioration of cognitive performance and, in particular, learning and memory. Different therapeutic approaches are available to treat cognitive impairment during physiological aging and neurodegenerative or psychiatric disorders. Traditional herbal medicine and numerous plants, either directly as supplements or indirectly in the form of food, improve brain functions including memory and attention. More than a hundred herbal medicinal plants have been traditionally used for learning and memory improvement, but only a few have been tested in randomized clinical trials. Here, we will enumerate those medicinal plants that show positive effects on various cognitive functions in learning and memory clinical trials. Moreover, besides natural products that show promising effects in clinical trials, we briefly discuss medicinal plants that have promising experimental data or initial clinical data and might have potential to reach a clinical trial in the near future.  相似文献   

5.
Brain G-protein coupled receptors have been hypothesized to be potential targets for maintaining or restoring cognitive function in normal aged individuals or in patients with neurodegenerative disease. A number of recent reports suggest that activation of melanocortin receptors (MCRs) in the brain can significantly improve cognitive functions of normal rodents and of different rodent models of the Alzheimer’s disease. However, the potential impact of normative aging on the expression of MCRs and their potential roles for modulating cognitive function remains to be elucidated. In the present study, we first investigated the expression of these receptors in six different brain regions of young (6 months) and aged (23 months) rats following assessment of their cognitive status. Correlation analysis was further performed to reveal potential contributions of MCR subtypes to spatial learning and memory. Our results revealed statistically significant correlations between the expression of several MCR subtypes in the frontal cortex/hypothalamus and the hippocampus regions and the rats’ performance in spatial learning and memory only in the aged rats. These findings support the hypothesis that aging has a direct impact on the expression and function of MCRs, establishing MCRs as potential drug targets to alleviate aging-induced decline of cognitive function.  相似文献   

6.
Cannabis is still the most widely used illicit drug around the world. While its use has always been prevalent among adolescents, recent evidence suggests that its consumption is also increasing among other population groups, such as pregnant women and aged people. Given the known impact of cannabis on brain development and behavior, it is important to dissect the possible long-term impact of its use across different age groups, especially on measures of cognitive performance. Animal models of cannabinoid exposure have represented a fundamental tool to characterize the long-lasting consequences of cannabinoids on cognitive performance and helped to identify possible factors that could modulate cannabinoids effects in the long term, such as the age of exposure and doses administered. This scoping review was systematically conducted using PubMed and includes papers published from 2015 to December 2021 that examined the effects of cannabinoids, either natural or synthetic, on cognitive performance in animal models where exposure occurred in the prenatal period, during adolescence, or in older animals. Overall, available data clearly point to a crucial role of age in determining the long-term effect of cannabinoid on cognition, highlighting possible detrimental consequences during brain development (prenatal and adolescent exposure) and beneficial outcomes in old age. In contrast, despite the recent advances in the field, it appears difficult to clearly establish a possible role of dosage in the effects of cannabinoids on cognition, especially when the adolescent period is taken into account.  相似文献   

7.
Isoflavones are polyphenols primarily contained in soybean. As phytoestrogens, isoflavones exert beneficial effects on various chronic diseases. Metabolic syndrome increases the risk of death due to arteriosclerosis in individuals with various pathological conditions, including obesity, hypertension, hyperglycemia, and dyslipidemia. Although the health benefits of soybean-derived isoflavones are widely known, their beneficial effects on the pathogenesis of metabolic syndrome are incompletely understood. This review aims to describe the association between soybean-derived isoflavone intake and the risk of metabolic syndrome development. We reviewed studies on soy isoflavones, particularly daidzein and genistein, and metabolic syndrome, using PubMed, ScienceDirect, and Web of Science. We describe the pathological characteristics of metabolic syndrome, including those contributing to multiple pathological conditions. Furthermore, we summarize the effects of soybean-derived daidzein and genistein on metabolic syndrome reported in human epidemiological studies and experiments using in vitro and in vivo models. In particular, we emphasize the role of soy isoflavones in metabolic syndrome-induced cardiovascular diseases. In conclusion, this review focuses on the potential of soy isoflavones to prevent metabolic syndrome by influencing the onset of hypertension, hyperglycemia, dyslipidemia, and arteriosclerosis and discusses the anti-inflammatory effects of isoflavones.  相似文献   

8.
Polyphenols are naturally derived compounds that are increasingly being explored for their various health benefits. In fact, foods that are rich in polyphenols have become an attractive source of nutrition and a potential therapeutic strategy to alleviate the untoward effects of metabolic disorders. The last decade has seen a rapid increase in studies reporting on the bioactive properties of polyphenols against metabolic complications, especially in preclinical models. Various experimental models involving cell cultures exposed to lipid overload and rodents on high fat diet have been used to investigate the ameliorative effects of various polyphenols against metabolic anomalies. Here, we systematically searched and included literature reporting on the impact of polyphenols against metabolic function, particularly through the modulation of mitochondrial bioenergetics within the skeletal muscle. This is of interest since the skeletal muscle is rich in mitochondria and remains one of the main sites of energy homeostasis. Notably, increased substrate availability is consistent with impaired mitochondrial function and enhanced oxidative stress in preclinical models of metabolic disease. This explains the general interest in exploring the antioxidant properties of polyphenols and their ability to improve mitochondrial function. The current review aimed at understanding how these compounds modulate mitochondrial bioenergetics to improve metabolic function in preclinical models on metabolic disease.  相似文献   

9.
Emerging literature suggests that dietary lutein may have important functions in cognitive health, but there is not enough data to substantiate its effects in human cognition. The current study was intended to determine the overall effect of lutein on the main domains of cognition in the adult population based on available placebo randomized-controlled trials. Literature searches were conducted in PubMed, AGRICOLA, Scopus, MEDLINE, and EMBASE on 14 November 2020. The effect of lutein on complex attention, executive function and memory domains of cognition were assessed by using an inverse-variance meta-analysis of standardized mean differences (SMD) (Hedge’s g method). Dietary lutein was associated with slight improvements in cognitive performance in complex attention (SMD 0.02, 95% CI −0.27 to 0.31), executive function (SMD 0.13, 95% CI −0.26 to 0.51) and memory (SMD 0.03, 95% CI −0.26 to 0.32), but its effect was not significant. Change-from-baseline analysis revealed that lutein consumption could have a role in maintaining cognitive performance in memory and executive function. Although dietary lutein did not significantly improve cognitive performance, the evidence across multiple studies suggests that lutein may nonetheless prevent cognitive decline, especially executive function. More intervention studies are needed to validate the role of lutein in preventing cognitive decline and in promoting brain health.  相似文献   

10.
In drug discovery today, drug exposure is determined in preclinical efficacy and safety studies and drug effects are related to measured concentrations rather than to the administered dose. This leads to a strong increase in the number of bioanalytical samples, demanding the development of higher throughput methods to cope with the increased workload. Here, a combined approach is described for the high-throughput preparation and liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis of drug levels in plasma samples from the preclinical efficacy and safety studies, i.e. exposure studies. Appropriate pharmacokinetic (PK) compartmental models were fitted to data from PK screening studies in the rat, which were subsequently used to simulate the expected plasma concentrations of the respective exposure studies. Information on the estimated drug concentrations was used to dilute the samples to appropriate concentration levels. A Tecan Genesis RSP liquid handling system was utilized to perform automated plasma sample preparation including serial dilution of standard solutions, dilution of plasma samples, addition of internal standard solution and precipitation with acetonitrile. This robotic sample preparation process permitted two studies of 1-96 samples each to be run simultaneously. To ensure the performance of this method the accuracy and precision for diazepam were examined. Two novel drugs were used to illustrate the suggested approach. In conclusion, our method for sample preparation of exposure samples, based on the combined use of PK simulations, a liquid handling system and a fast LC/MS/MS method, increased the throughput more than three times and minimized the errors, while maintaining the required accuracy and precision.  相似文献   

11.
12.
Glucocorticoid-induced osteogenic dysfunction is the main pathologyical mechanism underlying the development of glucocorticoid-induced osteoporosis. Glucocorticoids promote adipogenic differentiation and osteoblast apoptosis through various pathways. Various ongoing studies are exploring the potential of natural products in preventing glucocorticoid-induced osteoporosis. Preclinical studies have consistently shown the bone protective effects of tocotrienol through its antioxidant and anabolic effects. This review aims to summarise the potential mechanisms of tocotrienol in preventing glucocorticoid-induced osteoporosis based on existing in vivo and in vitro evidence. The current literature showed that tocotrienol prevents oxidative damage on osteoblasts exposed to high levels of glucocorticoids. Tocotrienol reduces lipid peroxidation and increases oxidative stress enzyme activities. The reduction in oxidative stress protects the osteoblasts and preserves the bone microstructure and biomechanical strength of glucocorticoid-treated animals. In other animal models, tocotrienol has been shown to activate the Wnt/β-catenin pathway and lower the RANKL/OPG ratio, which are the targets of glucocorticoids. In conclusion, tocotrienol enhances osteogenic differentiation and bone formation in glucocorticoid-treated osteoblasts while improving structural integrity in glucocorticoid-treated rats. This is achieved by preventing oxidative stress and osteoblast apoptosis. However, these preclinical results should be validated in a randomised controlled trial.  相似文献   

13.
This study was designed to evaluate the ameliorating effects of curculigoside from Curculigo orchioides Gaertn on learning and memory in aged rats. In the present study, the ameliorating effects of curculigoside were determined through animal behaviour studies (including step-down test and Y-maze test), and the possible mechanisms were explored by evaluation of the activity of acetylcholinesterase (AchE) and determination of the expression of BACE1. Oral adminstration of the curculigoside (20, 40 mg/kg/day) for 14 days can significantly improve the latency and number of errors in aged rats based on the behaviour study results. In addition, the activity of AchE can be decreased by treatment of the curculigoside (10, 20, 40 mg/kg/day). Moreover, the expression of BACE1 can be down-regulated in the hippocampus of aged rats treated with curculigoside. The results of our present work have indicated that curculigoside can improve cognitive function in aged animals, possibly by decreasing the activity of AchE in the cerebra and inhibiting the expression of BACE1 in the hippocampus. In conclusion, our results suggested that curculigoside can be possible developed as a new drug for the treatment of Alzheimer's disease in the future.  相似文献   

14.
Aurora kinase B (AURKB) is a mitotic serine/threonine protein kinase that belongs to the aurora kinase family along with aurora kinase A (AURKA) and aurora kinase C (AURKC). AURKB is a member of the chromosomal passenger protein complex and plays a role in cell cycle progression. Deregulation of AURKB is observed in several tumors and its overexpression is frequently linked to tumor cell invasion, metastasis and drug resistance. AURKB has emerged as an attractive drug target leading to the development of small molecule inhibitors. This review summarizes recent findings pertaining to the role of AURKB in tumor development, therapy related drug resistance, and its inhibition as a potential therapeutic strategy for cancer. We discuss AURKB inhibitors that are in preclinical and clinical development and combination studies of AURKB inhibition with other therapeutic strategies.  相似文献   

15.
Celastrol, the most abundant compound derived from the root of Tripterygium wilfordii, largely used in traditional Chinese medicine, has shown preclinical and clinical efficacy for a broad range of disorders, acting via numerous mechanisms, including the induction of the expression of several neuroprotective factors, the inhibition of cellular apoptosis, and the decrease of reactive oxygen species (ROS). Given the crucial implication of these pathways in the pathogenesis of Central Nervous System disorders, both in vitro and in vivo studies have focused their attention on the possible use of this compound in these diseases. However, although most of the available studies have reported significant neuroprotective effects of celastrol in cellular and animal models of these pathological conditions, some of these data could not be replicated. This review aims to discuss current in vitro and in vivo lines of evidence on the therapeutic potential of celastrol in neurodegenerative diseases, including Alzheimer’s and Parkinson’s diseases, amyotrophic lateral sclerosis, Huntington’s disease, multiple sclerosis, and cadmium-induced neurodegeneration, as well as in psychiatric disorders, such as psychosis and depression. In vitro and in vivo studies focused on celastrol effects in cerebral ischemia, ischemic stroke, traumatic brain injury, and epilepsy are also described.  相似文献   

16.
Capsaicin is a natural compound found in chili peppers and is used in the diet of many countries. The important mechanism of action of capsaicin is its influence on TRPV1 channels in nociceptive sensory neurons. Furthermore, the beneficial effects of capsaicin in cardiovascular and oncological disorders have been described. Many recent publications show the positive effects of capsaicin in animal models of brain disorders. In Alzheimer’s disease, capsaicin reduces neurodegeneration and memory impairment. The beneficial effects of capsaicin in Parkinson’s disease and depression have also been described. It has been found that capsaicin reduces the area of infarction and improves neurological outcomes in animal models of stroke. However, both proepileptic and antiepileptic effects of capsaicin in animal models of epilepsy have been proposed. These contradictory results may be caused by the fact that capsaicin influences not only TRPV1 channels but also different molecular targets such as voltage-gated sodium channels. Human studies show that capsaicin may be helpful in treating stroke complications such as dysphagia. Additionally, this compound exerts pain-relieving effects in migraine and cluster headaches. The purpose of this review is to discuss the mechanisms of the beneficial effects of capsaicin in disorders of the central nervous system.  相似文献   

17.
In both humans and animal models, consumption of a high-saturated-fat diet has been linked to vascular dysfunction and cognitive impairments. Laboratory animals provide excellent models for more invasive high-fat-diet-related research. However, the physiological differences between humans and common animal models in terms of how they react metabolically to high-fat diets need to be considered. Here, we review the factors that may affect the translatability of mechanistic research in animal models, paying special attention to the effects of a high-fat diet on vascular outcomes. We draw attention to the dissociation between metabolic syndrome and dyslipidemia in rodents, unlike the state in humans, where the two commonly occur. We also discuss the differential vulnerability between species to the metabolic and vascular effects of macronutrients in the diet. Findings from animal studies are better interpreted as modeling specific aspects of dysfunction. We conclude that the differences between species provide an opportunity to explore why some species are protected from the detrimental aspects of high-fat-diet-induced dysfunction, and to translate these findings into benefits for human health.  相似文献   

18.
张朋朋  张洁  马慧萍  景临林 《化学通报》2023,86(2):189-194,172
6-羟基染料木素(6-OHG)和8-羟基染料木素(8-OHG)是染料木素A环上C6或C8位发生羟基化反应生成的衍生物,其分子中有更多酚羟基,同时含有邻二酚羟基结构,这也使它们的生物活性与染料木素相比发生了显著变化。研究表明,6-OHG和8-OHG具有抗氧化、抗诱变、抑制磷酸二酯酶3B活性、抗糖化、保肝、抗黑色素生成作用、改善记忆力等广泛的药理活性。本文将对6-OHG和8-OHG的来源、制备方法和生物活性研究进行综述,以期为两个化合物的开发利用提供参考。  相似文献   

19.
Ferritin is an iron storage protein that plays a key role in iron homeostasis and cellular antioxidant activity. Ferritin has many advantages as a tumor immunotherapy platform, including a small particle size that allows for penetration into tumor-draining lymph nodes or tumor tissue, a unique structure consisting of 24 self-assembled subunits, cavities that can encapsulate drugs, natural targeting functions, and a modifiable outer surface. In this review, we summarize related research applying ferritin as a tumor immune vaccine or a nanocarrier for immunomodulator drugs based on different targeting mechanisms (including dendritic cells, tumor-associated macrophages, tumor-associated fibroblasts, and tumor cells). In addition, a ferritin-based tumor vaccine expected to protect against a wide range of coronaviruses by targeting multiple variants of SARS-CoV-2 has entered phase I clinical trials, and its efficacy is described in this review. Although ferritin is already on the road to transformation, there are still many difficulties to overcome. Therefore, three barriers (drug loading, modification sites, and animal models) are also discussed in this paper. Notwithstanding, the ferritin-based nanoplatform has great potential for tumor immunotherapy, with greater possibility of clinical transformation.  相似文献   

20.
Niacin (nicotinic acid), although an old drug, has seen a sudden surge in popularity for treatment of lipid disorders and other associated clinical conditions for the prevention of cardiovascular risk. Also, there has been considerable interest in clarifying the role of metabolic pathways of niacin in explaining the tolerability/adverse affect profile of the agent. Hence, it has become very important to quantify/monitor the levels of niacin and its metabolites in various clinical studies. This review describes the recent trends in the bioanalysis of niacin and its metabolites, where HPLC and LC-MS/MS assays have been successfully employed to measure the drug levels in various biological matrices arising from preclinical and clinical studies. In addition, this review encompass various considerations such as internal standard selection, extraction schemes, matrix effect, selectivity evaluation and optimization of mass spectral conditions to enable the development of sound bioanalytical methods for niacin alone or niacin along with its metabolites. Recent updates pertaining to the clinical pharmacology of niacin and ongoing debate for the clarification of adverse effects are also provided. Overall LC-MS/MS methods have proven to be choice of bioanalytical method for the quantification of niacin alone or with its metabolites in both preclinical and clinical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号