首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The copper(I)‐catalyzed azide–alkyne cycloaddition (CuAAC) reaction regiospecifically produces 1,4‐disubstituted‐1,2,3‐triazole molecules. This heterocycle formation chemistry has high tolerance to reaction conditions and substrate structures. Therefore, it has been practiced not only within, but also far beyond the area of heterocyclic chemistry. Herein, the mechanistic understanding of CuAAC is summarized, with a particular emphasis on the significance of copper/azide interactions. Our analysis concludes that the formation of the azide/copper(I) acetylide complex in the early stage of the reaction dictates the reaction rate. The subsequent triazole ring‐formation step is fast and consequently possibly kinetically invisible. Therefore, structures of substrates and copper catalysts, as well as other reaction variables that are conducive to the formation of the copper/alkyne/azide ternary complex predisposed for cycloaddition would result in highly efficient CuAAC reactions. Specifically, terminal alkynes with relatively low pKa values and an inclination to engage in π‐backbonding with copper(I), azides with ancillary copper‐binding ligands (aka chelating azides), and copper catalysts that resist aggregation, balance redox activity with Lewis acidity, and allow for dinuclear cooperative catalysis are favored in CuAAC reactions. Brief discussions on the mechanistic aspects of internal alkyne‐involved CuAAC reactions are also included, based on the relatively limited data that are available at this point.  相似文献   

2.
Copper(I) coordination complexes of the anionic fluorinated ligand, hydrotris(3-trifluoromethyl-5-methyl-1-pyrazolyl)borate (L0f), i.e. the copper(I) carbonyl complex, [CuI(L0f)(CO)] (1), the copper(I) triphenylphosphine complex, [CuI(L0f)(PPh3)] (2), the copper(I) acetonitrile complex, [CuI(L0f)(NCMe)] (3), and the corresponding copper(I) triphenylphosphine complex with hydrotris(3,5-diisopropyl-1-pyrazolyl)-borate anion (L1), i.e. [CuI(L1)(PPh3)] (4), were synthesized in order to investigate the influence of the electron-withdrawing groups on the pyrazolyl rings. The structures of complexes 1, 2, and 4 were determined by X-ray crystallography. While X-ray crystallography did not show definitive trends in terms of copper(I) atom geometry, the clear influence of the electronic structure of the pyrazolyl rings is observed by spectroscopic techniques, namely, IR and multinuclear NMR spectroscopy. Finally, the relative stability of the copper(I) complexes is discussed.  相似文献   

3.
The copper(I)‐catalyzed azide‐alkyne cycloaddition (CuAAC) was discovered in 2002, which has become the most remarkable example for “click chemistry” to date. In CuAAC reaction, 1‐copper(I) alkyne has been recognized to be a key intermediate. However, many contradictory experimental results for this intermediate were reported in literature. For example, only the in‐situ generated 1‐copper(I) alkyne was used, while the premade 1‐copper(I) alkyne proved to be inefficient under the standard conditions. The kinetic studies indicated that CuAAC reaction had a strict second‐order dependence on Cu(I) and the DFT studies demonstrated that 1‐copper(I) alkyne intermediate should be a dinuclear copper(I) complex. But these results were inconsistent with the structure of the premade 1‐copper(I) alkyne. Although hundreds of structurally different ligands were reported to significantly enhance the efficiency of CuAAC reaction, their functions were assigned to prevent the oxidation and the disproportionation of Cu(I) ion. Based on the investigation of the references and our works, we proposed that the in‐situ generated 1‐copper(I) alkyne in CuAAC reaction is not identical with the premade 1‐copper(I) alkyne. The ligands may play dual roles to activate the 1‐copper(I) alkyne by blocking the polymerization of the in‐situ formed 1‐copper(I) alkynes and dissociating the polymeric structures of the premade 1‐copper(I) alkynes. As a result, we first disclosed that carboxylic acids can function as such activators and a novel carboxylic acid‐catalyzed CuAAC strategy was developed, which has been proven to be the most convenient and highly efficient CuAAC method to date. Furthermore, highly efficient and regioselective methods for the syntheses of 1,4,5‐trisubstituted 1,2,3‐triazoles were developed by using the premade 1‐copper(I) alkynes as substrates, in which the novel function of the premade 1‐copper(I) alkynes as excellent dipolarophiles was first disclosed and applied. In this article, a series of works reported by our group for the in‐situ generated and the premade 1‐copper(I) alkynes in cycloadditions are reviewed.  相似文献   

4.
A copper catalyst system derived from TaoPhos and CuF2 was used successfully for catalytic asymmetric Huisgen [3+2] cycloaddition of azides and alkynes to give optically pure products containing succinimide‐ and triazole‐substituted quaternary carbon stereogenic centers. The desired products were obtained in good yields (60–80 %) and 85:15 to >99:1 enantiomeric ratio (e.r.) in this click cycloaddition reaction.  相似文献   

5.
设计合成了2个结构新颖的半夹心单核聚吡唑硼酸盐羧酸配合物Tp*Co(Hglu)(CH3OH)(1)和Tp*Co(Hsub)(H2O)(2)[Tp*=三聚(3,5-二甲基吡唑)硼酸根, H2glu=戊二酸, H2sub=辛二酸], 并通过元素分析、 红外光谱、 紫外-可见光谱和X射线单晶结构分析对标题配合物进行了表征. 结构分析表明, 在配合物1和2中, 配体Tp*都是三齿配位, 配位模式相同; 戊二酸和辛二酸都以μ111的端基配位模式与金属相连. 此外, 还对配合物的热稳定性进行了详细分析, 并初步探讨了配合物催化氧化环己烷的催化活性.  相似文献   

6.
Hydrogenolysis of the scorpionate‐supported barium alkyl complex (TpAd,iPr)Ba[CH(SiMe3)2](THF) (TpAd,iPr=hydrotris(3‐adamantyl‐5‐isopropyl‐pyrazolyl)borate) afforded the dinuclear barium hydrido complex [(TpAd,iPr)Ba(μ‐H)]2 ( 2 ), which was characterized by NMR spectroscopy and single‐crystal X‐ray analysis. Exposure of 2 with 1 atm of CO resulted in a reductive coupling process to form the cis‐ethendiolate dianion ( 3 ). Reaction of 2 with one equivalent of PhC≡C−C≡CPh gave barium 1,4‐diphenyl‐2‐butyne‐1,4‐diyl complex {[(TpAd,iPr)Ba]2(PhCH−C≡C−CHPh) ( 4 ).  相似文献   

7.
Highly fluorinated, dihydridobis(3,5-bis(trifluoromethyl)pyrazolyl)borate ligand, [H(2)B(3,5-(CF(3))(2)Pz)(2)](-) has been synthesized and characterized as its potassium salt. The copper(II) and zinc(II) complexes, [H(2)B(3,5-(CF(3))(2)Pz)(2)](2)Cu and [H(2)B(3,5-(CF(3))(2)Pz)(2)](2)Zn, have been prepared by metathesis of [H(2)B(3,5-(CF(3))(2)Pz)(2)]K with Cu(OTf)(2) and Zn(OTf)(2), respectively. All the new metal adducts have been characterized by X-ray diffraction. The potassium salt is polymeric and shows several K.F interactions. The Cu center of [H(2)B(3,5-(CF(3))(2)Pz)(2)](2)Cu adopts a square planar geometry, whereas the Zn atom in [H(2)B(3,5-(CF(3))(2)Pz)(2)](2)Zn displays a tetrahedral coordination. Bis(pyrazolyl)borate ligands in the Zn adduct show a significantly distorted boat conformation. The nature and extent of this distortion is similar to that observed for the methylated analog, [H(2)B(3,5-(CH(3))(2)Pz)(2)](2)Zn. This ligand allows a comparison of electronic effects of bis(pyrazolyl)borate ligands with similar steric properties. Crystallographic data for [H(2)B(3,5-(CF(3))(2)Pz)(2)]K: triclinic, space group P&onemacr;, with a = 8.385(1) ?, b = 10.097(2) ?, c = 10.317(1) ?, alpha = 104.193(9) degrees, beta = 104.366(6) degrees, gamma = 91.733(9) degrees, V = 816.5(3) ?(3), and Z = 2. [H(2)B(3,5-(CF(3))(2)Pz)(2)](2)Cu is monoclinic, space group C2/c with a = 25.632(3) ?, b = 9.197(1) ?, c = 17.342(2) ?, beta = 129.292(5) degrees, V = 3164.0(6) ?(3), and Z = 4. [H(2)B(3,5-(CF(3))(2)Pz)(2)](2)Zn is triclinic, space group P&onemacr;, with a = 9.104(1) ?, b = 9.278(1) ?, c = 18.700(2) ?, alpha = 83.560(6) degrees, beta = 88.200(10) degrees, gamma = 78.637(9) degrees, V = 1538.8(3) ?(3), and Z = 2. [H(2)B(3,5-(CH(3))(2)Pz)(2)](2)Zn is monoclinic, space group C2/c with a = 8.445(1) ?, b = 14.514(2) ?, c = 19.983(3) ?, beta = 90.831(8) degrees, V = 2449.1(6) ?(3), and Z = 4.  相似文献   

8.
王积涛  唐良富  李华 《有机化学》1998,18(3):195-201
综述了VIB金属(Mo、W)多吡唑硼配合物近年来的研究进展。详细地叙述了第二代多吡唑硼配体的合成与表征。  相似文献   

9.
The mechanism of the CuAAC reaction has been investigated by electrospray ionization mass spectrometry (ESI‐MS) using a combination of the neutral reactant approach and the ion‐tagging strategy. Under these conditions, for the first time, putative dinuclear copper intermediates were fished out and characterized by ESI(+)‐MS/MS. New insight into the CuAAC reaction mechanisms is provided and a catalytic cycle is proposed.  相似文献   

10.
11.
The title compound crystallizes in the monoclinic space group P21 with a = 7.928(6), b = 9.306(4), c = 17.16(2) Å, β = 92.06(8)°, V = 1265(2) Å3, Z = 2, Dcalc = 2.191 g cm–3. From two independent molecular units, metal-ligand strands are formed based on electrostatic interactions between the thallium centers and pyrazolyl π manifolds from neighboring molecules.  相似文献   

12.
13.
14.
Dinuclear alkynylcopper(I) ladderane complexes are prepared by a robust and simple protocol involving the reduction of Cu2(OH)3OAc or Cu(OAc)2 by easily oxidised alcohols in the presence of terminal alkynes; they function as efficient catalysts in copper‐catalysed alkyne–azide cycloaddition reactions as predicted by the Ahlquist–Fokin calculations. The same copper(I) catalysts are formed during reactions by using the Sharpless–Fokin protocol. The experimental results also provide evidence that sodium ascorbate functions as a base to deprotonate terminal alkynes and additionally give a convincing alternative explanation for the fact that the CuI‐catalysed reactions of certain 1,3‐diazides with phenylacetylene give bis(triazoles) as the major products. The same dinuclear alkynylcopper(I) complexes also function as catalysts in cycloaddition reactions of azides with 1‐iodoalkynes.  相似文献   

15.
Copper(I)‐catalyzed addition of limited amounts of azides to multiple alkynes, which led to statistical mixtures of triazole/acetylene derivatives or, in other cases, resulted in preferred formation of multiple triazoles, was studied at pre‐organizable calixarene platforms bearing up to four propargyl groups. Depending on calixarene structures and reaction conditions, the unprecedented specific or selective formation of exhaustively triazolated calixarenes or a complete loss of the selectivity were observed. Both autocatalytic copper activation and a local copper(I) concentration increase due to copper–triazole complexation were thoroughly studied as the most expected reasons for the selectivity and both were disproved. Mixed triazolated/propargylated calixarenes and their copper(I) complexes proved not to be involved in the cascade‐like process that was modeled to be driven by an intramolecular transfer of two copper(I) ions from a just‐formed binuclear copper intermediate to the adjacent acetylene unit.  相似文献   

16.
Clicking in zeolites : Copper(I)‐exchanged zeolites proved to be practical and efficient catalysts for the cycloaddition of azomethine imines with alkynes, providing a convenient access to N,N‐bicyclic pyrazolidinone derivatives (see scheme). With high regioselectivity, 100 % atom economy, and convenient product isolation, this heterogeneously catalyzed version of the Dorn cycloaddition corresponds to click‐chemistry criteria.

  相似文献   


17.
Treatment of a solid mixture of KBH4 with six equivalents of 3,5-diisopropylpyrazole (iPr2pzH) at 180 °C afforded KTpiPr2(iPr2PzH)3 in 53% yield. KBpiPr2 was synthesized in 56% yield by treatment of a 1:2 M ratio of KBH4 and iPr2PzH in refluxing dimethylacetamide. Treatment of MI2 (M = Ca, Sr, Ba) with two equivalents of KBp or KBpiPr2 in tetrahydrofuran afforded MBp2(THF)2 (M = Ca, 64%, M = Sr, 81%), BaBp2(THF)4 (32%), and M(BpiPr2)2(THF)2 (M = Ca, 63%; M = Sr, 61%, M = Ba, 48%) as colorless crystalline solids upon workup. These complexes were characterized by spectral and analytical techniques and by X-ray crystal structure determinations of all complexes except KBpiPr2. KTpiPr2(iPr2PzH)3 contains one κ3-N,N,N-TpiPr2 ligand and three κ1-iPr2pzH ligands, with overall distorted octahedral geometry about the K ion. The iPr2PzH nitrogen-hydrogen bonds are engaged in intramolecular hydrogen bonding to the 2-nitrogen atoms of the TpiPr2 ligand. The solid state structures of MBp2(THF)2, BaBp2(THF)4, and M(BpiPr2)2(THF)2 contain κ3-N,N,H Bp and BpiPr2 ligands, which form through metal-nitrogen bond formation to the 2-nitrogen atoms of the pyrazolyl fragments and metal-hydrogen bond formation to one boron-bound hydrogen atom per Bp ligand. SrBp2(THF)2has the shortest metal-hydrogen interactions among the series. A combination of preparative sublimations, solid state decomposition temperatures, and thermogravimetric analysis demonstrated that MBp2(THF)2, BaBp2(THF)4, and M(BpiPr2)2(THF)2 undergo solid state decomposition at moderate temperatures.  相似文献   

18.
Reaction of [Si(3,5‐Me2pz)4] ( 1 ) with [Cu(MeCN)4][BF4] ( 2 ) gave the mono‐ and dinuclear copper complexes [Cu2(FTp*)2] ( 3 ) and [Cu(FTp*)2] ( 4 ). Both complexes contain the so‐far unprecedented boron‐fluorinated FTp* ligand ([FB(3,5‐Me2pz)3]? with pz=pyrazolyl) originating from 1 , acting as a pyrazolyl transfer reagent, and the [BF4]? counter anion of 2 , serving as the source of the {BF} entity. The solid‐state structures as well as the NMR and EPR spectroscopic characteristics of the complexes were elaborated. Pulsed gradient spin echo (PGSE) experiments revealed that 3 retains (almost entirely) its dimeric structure in benzene, whereas dimer cleavage and formation of acetonitrile adducts, presumably [Cu(FTp*)(MeCN)], is observed in acetonitrile. The short Cu???Cu distance of 269.16 pm in the solid‐state is predicted by DFT calculations to be dictated by dispersion interactions between all atoms in the complex (the Cu?Cu dispersion contribution itself is only very small). As revealed by cyclic voltammetry studies, 3 shows an irreversible (almost quasi‐reversible at higher scan rates) oxidation process centred at Epa=?0.23 V (E01/2=?0.27 V) (vs. Fc/Fc+). Oxidation reactions on a preparative scale with one equivalent of the ferrocenium salt [Fc][BF4] (very slow reaction) or air (fast reaction) furnished blue crystals of the mononuclear copper(II) complex [Cu(FTp*)2] ( 4 ). As expected for a Jahn–Teller‐active system, the coordination sphere around copper(II) is strongly distorted towards a stretched octahedron, in accordance with EPR spectroscopic findings.  相似文献   

19.
Three mononuclear copper(II) complexes of copper nitrate with 2, 6‐bis(pyrazol‐1‐yl)pyridine ( bPzPy ) and 2, 6‐bis(3′,5′‐dimethylpyrazol‐1‐yl)pyridine ( bdmPzPy ), [Cu(bPzPy)(NO3)2] ( 1 ), [Cu(bPzPy)(H2O)(NO3)2] ( 2 ) and [Cu(bdmPzPy)(NO3)2] ( 3 ) were synthesized by the reaction of copper nitrate with the ligand in ethanol solution. The complexes have been characterized through analytical, spectroscopic and EPR measurements. Single crystal X‐ray structure analysis of complexes 1 and 2 revealed a five‐coordinate copper atom in 1 , whereas 2 contains a six‐coordinate (4+2) CuII ion with molecular units acting as supramolecular nodes. These neutral nodes are connected through O–H ··· O(nitrate) hydrogen bonds to give couples of parallel linear strips assembled in 1D‐chains in a zipper‐like motif.  相似文献   

20.
Chloro phosphite complexes RuClTpL(PPh3) (1a, 1b) [L = P(OEt)3, PPh(OEt)2] and RuClTp[P(OEt)3]2 (1c) [Tp = hydridotris(pyrazolyl)borate] were prepared by allowing RuClTp(PPh3)2 to react with an excess of phosphite. Treatment of the chloro complexes 1 with NaBH4 in ethanol yielded the hydride RuHTpL(PPh3) (2a, 2b) and RuHTp[P(OEt)3]2 (2c) derivatives. Protonation reaction of 2 with Brønsted acids was studied and led to thermally unstable (above 10 °C) dihydrogen [Ru(η2- H2)TpL(PPh3)]+ (3a, 3b) and [Ru(η2-H2)Tp{P(OEt)3}2]+ (3c) complexes. The presence of the η2-H2 ligand is indicated by short T1 min values and JHD measurements of the partially deuterated derivatives. Aquo [RuTp(H2O)L(PPh3)]BPh4 (4), carbonyl [RuTp(CO)L(PPh3)]BPh4 (5), and nitrile [RuTp(CH3CN)L(PPh3)]BPh4 (6) derivatives [L = P(OEt)3] were prepared by substituting H2 in the η2-H2 derivatives 3. Vinylidene [RuTp{CC(H)R}L(PPh3)]BPh4 (7, 8) (R = Ph, tBu) and allenylidene [RuTp(CCCR1R2)L(PPh3)]BPh4 (9-11) complexes (R1 = R2 = Ph, R1 = Ph R2 = Me) were also prepared by allowing dihydrogen complexes 3 to react with the appropriate HCCR and HCCC(OH)R1R2 alkynes. Deprotonation of vinylidene complexes 7, 8 with NEt3 was studied and led to acetylide Ru(CCR)TpL(PPh3) (12, 13) derivatives. The trichlorostannyl Ru(SnCl3)TpL(PPh3) (14) compound was also prepared by allowing the chloro complex RuClTpL(PPh3) to react with SnCl2 · 2H2O in CH2Cl2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号