首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Irbesartan (IR) is an angiotensin II receptor antagonist drug with antihypertensive activity. IR bioavailability is limited due to poor solubility and first-pass metabolism. The current investigation aimed to design, develop, and characterize the cyclodextrin(s) (CD) complexed IR (IR-CD) loaded solid lipid nanoparticles (IR-CD-SLNs) for enhanced solubility, sustained release behavior, and subsequently improved bioavailability through oral administration. Based on phase solubility studies, solid complexes were prepared by the coacervation followed by lyophilization method and characterized for drug content, inclusion efficiency, solubility, and in vitro dissolution. IR-CD inclusion complexes demonstrated enhancement of solubility and dissolution rate of IR. However, the dissolution efficiency was significantly increased with hydroxypropyl-βCD (HP-βCD) inclusion complex than beta-CD (βCD). SLNs were obtained by hot homogenization coupled with the ultrasonication method with IR/HP-βCD inclusion complex loaded into Dynasan 112 and glycerol monostearate (GMS). SLNs were evaluated for physicochemical characteristics, in vitro release, differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD), and physical stability at room temperature for two months. The optimized SLNs formulation showed particle size, polydispersity index, zeta potential, assay, and entrapment efficiency of 257.6 ± 5.1 nm, 0.21 ± 0.03, −30.5 ± 4.1 mV, 99.8 ± 2.5, and 93.7 ± 2.5%, respectively. IR-CD-SLN and IR-SLN dispersions showed sustained release of IR compared to the IR-CD inclusion complexes. DSC results complimented PXRD results by the absence of IR endothermic peak. Optimized IR-CD complex, IR-SLN, and IR-CD-SLN formulations were stable for two months at room temperature. Thus, the current IR oral formulation may exhibit improved oral bioavailability and prolonged antihypertensive activity, which may improve therapeutic outcomes in the treatment of hypertension and heart failure.  相似文献   

2.
Objective: The present study aimed to develop and optimize esomeprazole loaded proniosomes (EZL-PNs) to improve bioavailability and therapeutic efficacy. Method: EZL-PNs formulation was developed by slurry method and optimized by 33 box-Bhekhen statistical design software. Span 60 (surfactant), cholesterol, EZL concentration were taken as independent variables and their effects were evaluated on vesicle size (nm), entrapment efficiency (%, EE) and drug release (%, DR). Furthermore, optimized EZL-PNs (EZL-PNs-opt) formulation was evaluated for ex vivo permeation, pharmacokinetic and ulcer protection activity. Result: The EZL-PNs-opt formulation showed 616 ± 13.21 nm of vesicle size, and 81.21 ± 2.35% of EE. EZL-PNs-opt exhibited negative zeta potential and spherical confirmed scanning electron microscopy. EZL-PNs-opt showed sustained release of EZL (95.07 ± 2.10% in 12 h) than pure EZL dispersion. The ex-vivo gut permeation result exhibited a significantly (p < 0.05) enhanced flux than pure EZL. The in vivo results revealed 4.02-fold enhancement in bioavailability and 61.65% protection in ulcer than pure EZL dispersion (43.82%). Conclusion: Our findings revealed that EZL-PNs formulation could be an alternative delivery system of EZL to enhance oral bioavailability and antiulcer activity.  相似文献   

3.
Background and Introduction: Saxagliptin is a hypoglycemic drug that acts as a dipeptidyl peptidase-4 (DPP-4) inhibitor and is preferably used in the treatment of Type 2 Diabetes Mellitus (T2DM). It is safe and tolerable; however, the major disadvantage associated with it is its low bioavailability. Aim: The present research aimed to enhance the bioavailability of the drug by enteric coating with a polymer that controls the rate of drug delivery, and it was prepared as Solid Lipid Nanoparticles (SLNs). Methodology: In the current study, various SLN formulations were developed using a central composite design (CCD) module using Design Expert-11 software. A modified solvent injection technique was used to prepare Saxagliptin nanoparticles coated with Eudragit RS100. The CCD was used to determine the independent variables and their effect on dependent variables at varied levels. Evaluation studies such as particle size analysis, Zeta potential, polydispersity index (PDI), drug loading, entrapment efficiency, in-vitro drug release studies, and in vivo pharmacokinetic studies were performed for the optimized SLN formulation. The reversed-phase HPLC method was developed and validated for the estimation of the pharmacokinetic parameters of the pure drug and prepared SLNs. Results: The effect of independent variables (A1: amount of lipid, A2: amount of polymer, A3: surfactant concentration, and A4: homogenization speed) on dependent variables (R1: particle size, and R2: entrapment efficiency) was established in great detail. Observed responses of the prepared and optimized Saxagliptin SLN were close to the predicted values by the CCD. The prepared SLNs depicted particle sizes in the range of 212–442 nm. The particle size analysis results showed that an increase in the lipid concentration led to an increase in particle size. The developed bioanalytical method was noted to be very specific and robust. The method accuracy varied from 99.16% to 101.95% for intraday, and 96.08% to 103.12% for inter day operation at low (5 mcg/mL), moderate (10 mcg/mL), and higher (15 mcg/mL) drug concentrations. The observed Zeta potential values for the prepared SLNs were in the range of −41.09 ± 0.11 to 30.86 ± 0.63 mV suggesting quite good stability of the SLNs without any aggregation. Moreover, the polydispersity indices were in the range of 0.26 ± 0.051 to 0.45 ± 0.017, indicative of uniformity of sizes among the prepared SLNs. In vivo study outcomes proved that Saxagliptin oral bioavailability significantly enhanced in male Albino Wistar Rats via SLN formulation and Eudragit RS100 coating approach. Conclusions: The developed and optimized Saxagliptin SLNs revealed enhanced Saxagliptin bioavailability in comparison to the native drug. Thus, this formulation strategy can be of great importance and can be implied as a promising approach to enhance the Saxagliptin bioavailability for facilitated T2DM therapy.  相似文献   

4.
Ezetimibe (EZE) possesses low aqueous solubility and poor bioavailability and in addition, its extensive hepatic metabolism supports the notion of developing a novel carrier system for EZE. Ezetimibe was encapsulated into nanostructured lipid carriers (EZE-NLCs) via a high pressure homogenization technique (HPH). A three factor, two level (23) full factorial design was employed to study the effect of amount of poloxamer 188 (X1), pressure of HPH (X2) and number of HPH cycle (X3) on dependent variables. Particle size, polydispersity index (PDI), % entrapment efficiency (%EE), zeta potential, drug content and in-vitro drug release were evaluated. The optimized formulation displays pragmatic inferences associated with particle size of 134.5 nm; polydispersity index (PDI) of 0.244 ± 0.03; zeta potential of −28.1 ± 0.3 mV; % EE of 91.32 ± 1.8% and % CDR at 24-h of 97.11%. No interaction was observed after X-ray diffraction (XRD) and differential scanning calorimetry (DSC) studies. EZE-NLCs (6 mg/kg/day p.o.) were evaluated in the high fat diet fed rats induced hyperlipidemia in comparison with EZE (10 mg/kg/day p.o.). Triglyceride, HDL-c, LDL-c and cholesterol were significantly normalized and histopathological evaluation showed normal structure and architecture of the hepatocytes. The results demonstrated the superiority of EZE-NLCs in regard to bioavailability enhancement, dose reduction and dose-dependent side effects.  相似文献   

5.
Treatment of herpes simplex infection requires high and frequent doses of oral acyclovir to attain its maximum therapeutic effect. The current therapeutic regimen of acyclovir is known to cause unwarranted dose-related adverse effects, including acute kidney injury. For this reason, a suitable delivery system for acyclovir was developed to improve the pharmacokinetic limitations and ultimately administer the drug at a lower dose and/or less frequently. In this study, solid lipid nanoparticles were designed to improve the oral bioavailability of acyclovir. The central composite design was applied to investigate the influence of the materials on the physicochemical properties of the solid lipid nanoparticles, and the optimized formulation was further characterized. Solid lipid nanoparticles formulated from Compritol 888 ATO resulted in a particle size of 108.67 ± 1.03 nm with an entrapment efficiency of 91.05 ± 0.75%. The analyses showed that the optimum combination of surfactant and solid lipid produced solid lipid nanoparticles of good quality with controlled release property and was stable at refrigerated and room temperature for at least 3 months. A five-fold increase in oral bioavailability of acyclovir-loaded solid lipid nanoparticles was observed in rats compared to commercial acyclovir suspension. This study has presented promising results that solid lipid nanoparticles could potentially be used as an oral drug delivery vehicle for acyclovir due to their excellent properties.  相似文献   

6.
The objective of the current research is to develop ZnO-Manjistha extract (ZnO-MJE) nanoparticles (NPs) and to investigate their transdermal delivery as well as antimicrobial and antioxidant activity. The optimized formulation was further evaluated based on different parameters. The ZnO-MJE-NPs were prepared by mixing 10 mM ZnSO4·7H2O and 0.8% w/v NaOH in distilled water. To the above, a solution of 10 mL MJE (10 mg) in 50 mL of zinc sulfate was added. Box–Behnken design (Design-Expert software 12.0.1.0) was used for the optimization of ZnO-MJE-NP formulations. The ZnO-MJE-NPs were evaluated for their physicochemical characterization, in vitro release activity, ex vivo permeation across rat skin, antimicrobial activity using sterilized agar media, and antioxidant activity by the DPPH free radical method. The optimized ZnO-MJE-NP formulation (F13) showed a particle size of 257.1 ± 0.76 nm, PDI value of 0.289 ± 0.003, and entrapment efficiency of 79 ± 0.33%. Drug release kinetic models showed that the formulation followed the Korsmeyer–Peppas model with a drug release of 34.50 ± 2.56 at pH 7.4 in 24 h. In ex vivo studies ZnO-MJE-NPs-opt permeation was 63.26%. The antibacterial activity was found to be enhanced in ZnO-MJE-NPs-opt and antioxidant activity was found to be highest (93.14 ± 4.05%) at 100 µg/mL concentrations. The ZnO-MJE-NPs-opt formulation showed prolonged release of the MJE and intensified permeation. Moreover, the formulation was found to show significantly (p < 0.05) better antimicrobial and antioxidant activity as compared to conventional suspension formulations.  相似文献   

7.
The present study aimed to develop n-propyl gallate (PG)-encapsulated liposomes through a novel direct pouring method using the quality-by-design (QbD) approach. A further aim was to coat liposomes with hyaluronic acid (HA) to improve the stability of the formulation in nasal mucosa. The QbD method was used for the determination of critical quality attributes in the formulation of PG-loaded liposomes coated with HA. The optimized formulation was determined by applying the Box–Behnken design to investigate the effect of composition and process variables on particle size, polydispersity index (PDI), and zeta potential. Physiochemical characterization, in vitro release, and permeability tests, as well as accelerated stability studies, were performed with the optimized liposomal formulation. The optimized formulation resulted in 90 ± 3.6% encapsulation efficiency, 167.9 ± 3.5 nm average hydrodynamic diameter, 0.129 ± 0.002 PDI, and −33.9 ± 4.5 zeta potential. Coated liposomes showed significantly improved properties in 24 h in an in vitro release test (>60%), in vitro permeability measurement (420 μg/cm2) within 60 min, and also in accelerated stability studies compared to uncoated liposomes. A hydrogen-peroxide-scavenging assay showed improved stability of PG-containing liposomes. It can be concluded that the optimization of PG-encapsulated liposomes coated with HA has great potential for targeting several brain diseases.  相似文献   

8.
Kaempferol is a well-known antioxidant found in many plants and plant-based foods. In plants, kaempferol is present mainly in the form of glycoside derivatives. In this work, we focused on determining the effect of kaempferol and its glycoside derivatives on the expression level of genes related to the reduction of oxidative stress—NFE2L2, NQO1, SOD1, SOD2, and HO-1; the enzymatic activity of superoxide dismutases; and the level of glutathione. We used HL-60 acute promyelocytic leukemia cells, which were incubated with the anticancer drug etoposide and kaempferol or one of its three glycoside derivatives isolated from the aerial parts of Lens culinaris Medik.—kaempferol 3-O-[(6-O-E-caffeoyl)-β-d-glucopyranosyl-(1→2)]-β-d-galactopyranoside-7-O-β-d-glucuropyranoside (P2), kaempferol 3-O-[(6-O-E-p-coumaroyl)-β-d-glucopyranosyl-(1→2)]-β-d-galactopyranoside-7-O-β-d-glucuropyranoside (P5), and kaempferol 3-O-[(6-O-E-feruloyl)-β-d-glucopyranosyl-(1→2)]-β-d-galactopyranoside-7-O-β-d-glucuropyranoside (P7). We showed that none of the tested compounds affected NFE2L2 gene expression. Co-incubation with etoposide (1 µM) and kaempferol (10 and 50 µg/mL) leads to an increase in the expression of the HO-1 (9.49 and 9.33-fold at 10 µg/mL and 50 µg/mL, respectively), SOD1 (1.68-fold at 10 µg/mL), SOD2 (1.72-fold at 10–50 µg/mL), and NQO1 (1.84-fold at 50 µg/mL) genes in comparison to cells treated only with etoposide. The effect of kaempferol derivatives on gene expression differs depending on the derivative. All tested polyphenols increased the SOD activity in cells co-incubated with etoposide. We observed that the co-incubation of HL-60 cells with etoposide and kaempferol or derivative P7 increases the level of total glutathione in these cells. Taken together, our observations suggest that the antioxidant activity of kaempferol is related to the activation of antioxidant genes and proteins. Moreover, we observed that glycoside derivatives can have a different effect on the antioxidant cellular systems than kaempferol.  相似文献   

9.
The nano-drug delivery system has gained greater acceptability for poorly soluble drugs. Alogliptin (ALG) is a FDA-approved oral anti-hyperglycemic drug that inhibits dipeptidyl peptidase-4. The present study is designed to prepare polymeric ALG nanoparticles (NPs) for the management of diabetes. ALG-NPs were prepared using the nanoprecipitation method and further optimized by Box–Behnken experimental design (BBD). The formulation was optimized by varying the independent variables Eudragit RSPO (A), Tween 20 (B), and sonication time (C), and the effects on the hydrodynamic diameter (Y1) and entrapment efficiency (Y2) were evaluated. The optimized ALG-NPs were further evaluated for in vitro release, intestinal permeation, and pharmacokinetic and anti-diabetic activity. The prepared ALG-NPs show a hydrodynamic diameter of between 272.34 nm and 482.87 nm, and an entrapment efficiency of between 64.43 and 95.21%. The in vitro release data of ALG-NPs reveals a prolonged release pattern (84.52 ± 4.1%) in 24 h. The permeation study results show a 2.35-fold higher permeation flux than pure ALG. ALG-NPs exhibit a significantly (p < 0.05) higher pharmacokinetic profile than pure ALG. They also significantly (p < 0.05) reduce the blood sugar levels as compared to pure ALG. The findings of the study support the application of ALG-entrapped Eudragit RSPO nanoparticles as an alternative carrier for the improvement of therapeutic activity.  相似文献   

10.
Osthol (osthole), known as a neuroprotective drug, has shown potent anticancer activity. However, the potential clinical application of osthol is limited due to its low water solubility and low bioavailability. Polybutyl cyanoacrylate (PBCA) has been widely used to improve the solubility of drugs with poor water solubility. In this study, an orthogonal experimental design (OED) was applied to design the preparation process of PBCA nanoparticles (NPs). Then, nanoparticles were prepared and evaluated in terms of physicochemical properties, in vitro release, and cellular uptake, etc. Further, the anti-cancer activity of osthol-PBCA NPs was demonstrated in SH-SY5Y cells. The pharmacokinetics and area under the curve (AUC) were investigated. The obtained osthol-NPs presented a spherical shape with a particle size of 110 ± 6.7 nm, a polydispersity index (PDI) of 0.126, and a zeta potential of −13 ± 0.32 mV. Compared with the free osthol, the drugs in osthol-NPs presented better stability and sustained release pattern activity. In vitro analysis using SH-SY5Y neuroblastoma cells showed that osthol-loaded nanoparticles displayed a significantly enhanced intracellular absorption process (three times) and cytotoxicity compared with free osthol (p < 0.05, increased 10–20%). The in vivo pharmacokinetic study revealed that the AUC of osthol-NPs was 3.3-fold higher than that of free osthol. In conclusion, osthol-PBCA NPs can enhance the bioactivity of osthol, being proposed as a novel, promising vehicle for drug delivery.  相似文献   

11.
As the main component of Platycladus orientalis, cedrol has known germinal activity. A range of cedrol formulations have been developed to prevent hair-loss, but compliance remains key issues. In this study, we prepared cedrol nanoemulsion (CE-NE) and determined the particle size and PDI (polydispersion coefficient), investigated the hair growth activity and studied the bioavailability in vitro and in vivo. Results showed that the average particle size of CE-NE is 14.26 ± 0.16 nm, and the PDI value is 0.086 ± 0.019. In vitro drug release investigation and drug release kinetics analysis showed release profile of CE from nanoparticles demonstrates the preferred partition of CE in buffer pH 4.0, the release profile of CE-NE showed a first-order kinetics reaching around 36.7% after 6 h at 37 °C. We artificially depilated the back hair of C57BL/6 mice and compared the efficacy of a designed cedrol nanoemulsion to an existing ointment group. The hair follicles were imaged and quantified using a digital photomicrograph. The results showed that compared with the ointment, CE-NE had positive effects on hair growth, improved drug solubility. Compared with the ointment and 2% minoxidil groups, 50 mg/mL CE-NE led to more robust hair growth. Pharmacokinetics analysis showed that the AUC0–t of CE-NE was 4-fold higher than that of the ointment group, confirming that the bioavailability of the nanoemulsion was greater than that of the ointment. CE-NE also significantly reduced the hair growth time of model mice and significantly increased the growth rate of hair follicles. In conclusion, these data suggest that the nanoemulsion significantly improved the pharmacokinetic properties and hair growth effects cedrol, enhancing its efficacy in vitro and in vivo.  相似文献   

12.
Psoriatic arthritis is an autoimmune disease of the joints that can lead to persistent inflammation, irreversible joint damage and disability. The current treatments are of limited efficacy and inconvenient. Apremilast (APR) immediate release tablets Otezla® have 20–33% bioavailability compared to the APR absolute bioavailability of 73%. As a result, self-nanoemulsifying drug delivery systems (SNEDDS) of APR were formulated to enhance APR’s solubility, dissolution, and oral bioavailability. The drug assay was carried out using a developed and validated HPLC method. Various thermodynamic tests were carried out on APR-SNEDDS. Stable SNEDDS were characterized then subjected to in vitro drug release studies via dialysis membrane. The optimum formulation was F9, which showed the maximum in vitro drug release (94.9%) over 24 h, and this was further investigated in in vivo studies. F9 was composed of 15% oil, 60% Smix, and 25% water and had the lowest droplet size (17.505 ± 0.247 nm), low PDI (0.147 ± 0.014), low ZP (−13.35 mV), highest %T (99.15 ± 0.131) and optimum increases in the relative bioavailability (703.66%) compared to APR suspension (100%) over 24 h. These findings showed that APR-SNEDDS is a possible alternative delivery system for APR. Further studies are warranted to evaluate the major factors that influence the encapsulation efficiency and stability of APR-containing SNEDDS.  相似文献   

13.
Two novel natural flavonoid substituted polysaccharides (MBAP-1 and MBAP-2) were obtained from Tamarix chinensis Lour. and characterized by HPGPC, methylation, ultra-high-performance liquid chromatography-ion trap tandem mass spectrometry (UPLC-IT-MSn), and NMR analysis. The results showed that MBAP-1 was a homogenous heteropolysaccharide with a backbone of 4)-β-d-Glcp-(1→ and →3,4,6)-β-d-Glcp-(1→. MBAP-2 was also a homogenous polysaccharide which possessed a backbone of →3)-α-d-Glcp-(1→, →4)-β-d-Glcp-(1→ and →3,4)-β-d-Glcp-2-OMe-(1→. Both the two polysaccharides were substituted by quercetin and exhibited anticomplement activities in vitro. However, MBAP-1 (CH50: 0.075 ± 0.004 mg/mL) was more potent than MBAP-2 (CH50: 0.249 ± 0.006 mg/mL) and its reduced product, MBAP-1R (CH50: 0.207 ± 0.008 mg/mL), indicating that multiple monosaccharides and uronic acids might contribute to the anticomplement activity of the flavonoid substituted polysaccharides of T. chinensis. Furthermore, the antioxidant activity of MBAP-1 was also more potent than that of MBAP-2. In conclusion, these two flavonoid substituted polysaccharides from T. chinensis were found to be potential oxidant and complement inhibitors.  相似文献   

14.
A new 5,7-dihydroxy-3′-methoxy-4′-acetoxyflavone-8-C-β-d-arabinopyranoside-2″-O-(4‴-acetoxy)-glucoside (6) and three known flavone C-glycosides—5,7,3′,4′-tetrahydroxyflavone-6-C-xyloside-8-C-β-d-glucoside (lucenin-1) (7), 5,7,3′-trihydroxyflavone-6-C-glucoside-8-C-β-d-glucoside (vicenin-2) (8), and 5,7,4′-trihydroxy-3′-methoxyflavone-6-C-β-d-glucopyranoside-8-C-α-arabinopyranoside (chrysoeriol-6-C-β-d-glucopyranoside-8-C-α-arabinopyranoside) (9)—were isolated from aerial parts of Scleranthus perennis L. (Caryophyllaceae). Their structures were determined through the use of comprehensive spectroscopic and spectrometric methods, and a method for the quantification of the major constituents of S. perennis and S. annuus L. was developed. Furthermore, the anti-collagenase and antioxidant activities of all isolated compounds obtained from extracts and fractions from both Scleranthus species were evaluated. The highest percentage of collagenase inhibition (at 400 µg/mL) was distinguished for methanolic extracts (22.06%, 32.04%) and ethyl acetate fractions (16.59%, 14.40%) from S. annuus and S. perennis. Compounds 6–9 displayed moderate inhibitory activity, with IC50 values ranging from 39.59–73.86 µM.  相似文献   

15.
Background: The goal of this work was to develop a levonorgestrel liposome-loaded microneedle array patch for contraception. Methods: Levonorgestrel-loaded liposome was formulated by a solvent injection technique, characterized, and studied. Results: The formulated liposomes were characterized for particle size (147 ± 8 nm), polydispersity index (0.207 ± 0.03), zeta potential (−23 ± 4.25 mV), drug loading (18 ± 3.22%) and entrapment efficiency (85 ± 4.34%). A cryo high-resolution transmission electron microscopy and cryo field emission gun scanning electron microscopy study showed spherical shaped particles with a smooth surface. The in vitro drug release and in vivo pharmacokinetic study showed sustained behaviour of Levonorgestrel for 28 days. Conclusion: The levonorgestrel liposome-loaded microneedle array patch showed better contraception than the drug-loaded microneedle array patch.  相似文献   

16.
The drugs delivery system in the treatment of diseases has advantages such as reduced toxicity, increased availability of the drug, etc. Therefore, studies of the supramolecular interactions between local anesthetics (LAs) butamben (BTB) or ropivacaine (RVC) complexed with 2-hydroxypropyl-β-cyclodextrin (HP-βCD) and carried in Stealth liposomal (SL) are performed. 1H-NMR nuclear magnetic resonance (DOSY and STD) were used as the main tools. The displacements observed in the 1H-NMR presented the complexion between LAs and HP-βCD. The diffusion coefficients of free BTB and RVC were 7.70 × 10−10 m2 s−1 and 4.07 × 10−10 m2 s−1, and in the complex with HP-βCD were 1.90 × 10−10 m2 s−1 and 3.64 × 10−10 m2 s−1, respectively, which indicate a strong interaction between the BTB molecule and HP-βCD (98.3% molar fraction and Ka = 72.279 L/mol). With STD-NMR, the encapsulation of the BTB/HP-βCD and RVC/HP-βCD in SL vesicles was proven. Beyond the saturation transfer to the LAs, there is the magnetization transfer to the hydrogens of HP-βCD. BTB and RVC have already been studied in normal liposome systems; however, little is known of their behavior in SL.  相似文献   

17.
α-tocopherol (α-T) has the highest biological activity with respect to the other components of vitamin E; however, conventional formulations of tocopherol often fail to provide satisfactory bioavailability due to its hydrophobic characteristics. In this work, α-tocopherol-loaded nanoparticles based on chitosan were produced by membrane emulsification (ME). A new derivative was obtained by the cross-linking reaction between α-T and chitosan (CH) to preserve its biological activity. ME was selected as a method for nanoparticle production because it is recognized as an innovative and sustainable technology for its uniform-particle production with tuned sizes and high encapsulation efficiency (EE%), and its ability to preserve the functional properties of bioactive ingredients operating in mild conditions. The reaction intermediates and the final product were characterized by 1HNMR, Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC), while the morphological and dimensional properties of the nanoparticles were analyzed using electronic scanning microscopy (SEM) and dynamic light scattering (DLS). The results demonstrated that ME has high potential for the development of α-tocopherol-loaded nanoparticles with a high degree of uniformity (PDI lower than 0.2), an EE of almost 100% and good mechanical strength, resulting in good candidates for the production of functional nanostructured materials for drug delivery. In addition, the chemical bonding between chitosan and α-tocopherol allowed the preservation of the antioxidant properties of the bioactive molecule, as demonstrated by an enhanced antioxidant property and evaluated through in vitro tests, with respect to the starting materials.  相似文献   

18.
Mucor sp. has a wide range of applications in the food fermentation industry. In this study, a novel exopolysaccharide, labeled MSEPS, was separated from Mucor sp. fermentation broth through ethanol precipitation and was purified by ion-exchange chromatography, as well as gel filtration column chromatography. MSEPS was composed mostly of mannose, galactose, fucose, arabinose, and glucose with a molar ratio of 0.466:0.169:0.139:0.126:0.015 and had a molecular weight of 7.78 × 104 Da. The analysis of methylation and nuclear magnetic resonance results indicated that MSEPS mainly consisted of a backbone of →3,6)-α-d-Manp-(1→3,6)-β-d-Galp-(1→, with substitution at O-3 of →6)-α-d-Manp-(1→ and →6)-β-d-Galp-(1→ by terminal α-l-Araf residues. MTT assays showed that MSEPS was nontoxic in normal cells (HK-2 cells) and inhibited the proliferation of carcinoma cells (SGC-7901 cells). Additionally, morphological analysis and flow cytometry experiments indicated that MSEPS promoted SGC-7901 cell death via apoptosis. Therefore, MSEPS from Mucor sp. can be developed as a potential antitumor agent.  相似文献   

19.
In this study, two previously undescribed diterpenoids, (5R,10S,16R)-11,16,19-trihydroxy-12-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl-17(15→16),18(4→3)-diabeo-3,8,11,13-abietatetraene-7-one (1) and (5R,10S,16R)-11,16-dihydroxy-12-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl-17(15→16),18(4→3)-diabeo-4-carboxy-3,8,11,13-abietatetraene-7-one (2), and one known compound, the C13-nor-isoprenoid glycoside byzantionoside B (3), were isolated from the leaves of Clerodendrum infortunatum L. (Lamiaceae). Structures were established based on spectroscopic and spectrometric data and by comparison with literature data. The three terpenoids, along with five phenylpropanoids: 6′-O-caffeoyl-12-glucopyranosyloxyjasmonic acid (4), jionoside C (5), jionoside D (6), brachynoside (7), and incanoside C (8), previously isolated from the same source, were tested for their in vitro antidiabetic (α-amylase and α-glucosidase), anticancer (Hs578T and MDA-MB-231), and anticholinesterase activities. In an in vitro test against carbohydrate digestion enzymes, compound 6 showed the most potent effect against mammalian α-amylase (IC50 3.4 ± 0.2 μM) compared to the reference standard acarbose (IC50 5.9 ± 0.1 μM). As yeast α-glucosidase inhibitors, compounds 1, 2, 5, and 6 displayed moderate inhibitory activities, ranging from 24.6 to 96.0 μM, compared to acarbose (IC50 665 ± 42 μM). All of the tested compounds demonstrated negligible anticholinesterase effects. In an anticancer test, compounds 3 and 5 exhibited moderate antiproliferative properties with IC50 of 94.7 ± 1.3 and 85.3 ± 2.4 μM, respectively, against Hs578T cell, while the rest of the compounds did not show significant activity (IC50 > 100 μM).  相似文献   

20.
Meloxicam (MLX) is currently used in the therapeutic management of both acute and chronic inflammatory disorders such as pain, injuries, osteoarthritis, and rheumatoid arthritis in both humans and animals. Gastrointestinal toxicity and occasional renal toxicity were observed in patients taking it for a long-term period. Meloxicam’s late attainment of peak plasma concentration results in a slow onset of action. The goal of the current study was to prepare and characterize chitosan encapsulated meloxicam nanoparticles (CEMNPs) with high bioavailability and less gastro intestinal toxicity in order to prevent such issues. The size of the prepared CEMNPs was approximately 110–220 nm with a zetapotential of +39.9 mV and polydispersity index of 0.268, suggesting that they were uniformly dispersed nanoparticles. The FTIR and UV-Vis spectroscopy have confirmed the presence of MLX in the prepared CEMNPs. The pharmacokinetics have been studied with three groups of male Wistar rats receiving either of the treatments, viz., 4 mg·kg−1 of MLX and 1 or 4 mg·kg−1 of CEMNPs. Plasma samples were collected until 48 h post administration, and concentrations of MLX were quantified by using reverse (C18) phase HPLC. Non-compartmental analysis was applied to determine pharmacokinetic variables. Upon oral administration, the maximum concentration (Cmax) was reached in 4 h for CEMNPs and 6 h for MLX. The mean area under the plasma MLX concentration-time curve from ‘zero’ to infinity (AUC0–∞), half-life (t1/2β), and mean resident time (MRT) of 1 mg·kg−1 of CEMNPs was 1.4-, 2-, and 1.8-fold greater than 4 mg·kg−1 of MLX. The prepared CEMNPs demonstrated quicker absorption and prolonged release along with a significant improvement in the bioavailability of MLX, paving a prospective path for the development of drugs with enhanced bioavailability with less side effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号