首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Formation of the Cyclotetraphosphanes cis- und trans-P4(SiMe3)2(CMe3)2 in the Reaction of (Me3C)PCl2 with LiP(SiMe3)2 · 2 THF The mechanism of the reaction of (Me3C)PCl2 1 with LiP(SiMe3)2 · 2 THF 2 was investigated. With a mole ration of 1:1 at ?60°C quantitatively (Me3C)(Cl)P? P(SiMe3)2 3 is formed. This compound eliminates Me3SiCl on warming to 20°C, yielding Me3Si? P?P? CMe3 4 (can be trapped using 2,3-dimethyl-1,3-butadiene in a 4+2 cycloaddition), which dimerizes to produce the cyclotetraphosphanes cis-P4(SiMe3)2(CMe3)2 5 and trans-P4(SiMe3)2(CMe3)2 6 . Also with a mole ratio of 1:2 initially 3 is formed which remarkably slower reacts on to give [(Me3Si)2P]P2P? CMe3 8 . Remaining LiP(SiMe3)2 cleaves one Si? P bond of 8 producing (Me3)2P? P(CMe3)? P(SiMe3)2Li. Via a condensation to the pentaphosphide 10 and an elimination of LiP(SiMe3)2 from this intermediate, eventually trans-P4(SiMe3)2(CMe3)2 6 is obtained as the exclusive cyclotetra-phosphane product.  相似文献   

2.
Migration of the Cl substituent takes place when (Me3Si)2C(SiMe2Cl)(SiEt2I) or (Me3Si)2C(SiEt2Cl)(SiMe2I) reacts with AgBF4, the product in each being a mixture of (Me3Si)2C(SiEt2Cl)(SiMe2F) and (Me3Si)2C(SiEt2F)(SiMe2Cl), and analogous migration of N3 occurs in the corresponding reaction of (Me3Si)2C-(SiEt2N3)(SiMe2Br). Anchimeric assistance by the N3 group facilitates the solvolysis of (Me3Si)2C(SiMe2N3)(SiMe2Br).  相似文献   

3.
Das P(SiMe2)3P     
P(SiMe2)3P Li3P (produced from the elements) forms with Me2SiCl2 at 20°C in toluene the bicyclic compound P(SiMe2)3P 4 beside small amounts of ClMe2Si? P(SiMe2)2P? SiMe2Cl and traces of P4(SiMe2)6 7. 4 can be transformed into 7 by thermal treatment. With the formation of 4 the existence of a bicyclic silylphosphane is confirmed which has already been mentioned in connection with P(SiEt2)3P [1], but could not be proven until now.  相似文献   

4.
The reaction of the 2,2‐bis(organodichlorostannyl)propane [(Me3Si)2CH(Cl2)Sn]2CMe2 (A) with the corresponding organotin oxide {[(Me3Si)2CH(O)Sn]2CMe2}2 (B) does not provide the corresponding normally expected tetraorganodistannoxane {[(Me3Si)2CH(Cl)SnCMe2Sn(Cl)CH(SiMe3)2]O}n but a complex reaction mixture. One major product, namely the 2,4,6,8‐tetraorgano‐2,6‐dichloro‐1,5,9‐trioxa‐2,4,6,8‐tetrastannabicyclo[3.3.1]nonane derivative [(Me3Si)2CHSnCMe2Sn(Cl)CH(SiMe3)2]2O3 (C) was identified in situ by 2D 1H? 119Sn and 1H? 13C heteronuclear multiple quantum coherence and heteronuclear multiple bond correlation NMR spectroscopy as well as electrospray mass spectrometry. Compound C is proposed to be in equilibrium with an ionic species C′, the cation of which has an adamantane‐type structure. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
The Reaction Behaviour of Lithiated Aminosilanes RR′Si(H)N(Li)SiMe3 The bis(trimethylsilyl)aminosubstituted silances RR′Si(H)N(SiMe3)2 11 – 16 (R,R′ = Me, Me3SiNH, (Me3Si)2N) are obtained by the reaction of the lithium silylamides RR′Si(H)N(Li)SiMe3 1 – 10 (R,R′ = Me3SiNLi, Me, Me3SiNH, (M3Si)2N) with chlorotrimethylsilane in the polar solvent tetrahydrofurane (THF). In the reaction of the lithium silylamides [(Me3Si)2N]2(Me3SiNLi)SiH 10 with chlorotrimethylsilane in THF the rearranged product 1,1,3-tris[bis(trimethylsilyl)amino]-3-methyl-1,3-disila-butane [(Me3Si)2N]2Si(H)CH2SiMe2N(SiMe3)2 17 is formed. The reaction of the lithium silyamides RR′ Si(H)N(Li)SiMe3 1 – 3 (1: R = R′ = Me; 2: R = Me, R′ = Me3SiNH; 3: R = Me, R′ = Me3SiNLi) with chlorotrimethylsilane in the nonpolar solvent n-hexane gives the cyclodisilazanes [RR′ Si? NSiMe3]2 18 – 22 (R = Me, Me3SiNH, (Me3Si)2N; R′ = Me, Me3SiNH, (Me3Si)2N, N(SiMe3)Si · Me(NHSiMe3)2) and trimethylsilane. The lithium silylamides 4 , 5 , 6 , 9 , 10 (4: R = R′ = Me3SiNH; 5: R = Me3SiNH, R′ = Me3SiNLi; 6: R = R′ = Me3SiNLi; 9: R = (Me3Si)2N, R ′ = Me3SiNLi; 10: R = R′ = (Me3Si)2N) shows with chlorotrimethylsilane in n-hexane no reaction. The crystal structure of 17 and 21 are reported.  相似文献   

6.
Extension of the Chain Length of P2(SiMe3)4 by Reaction with LiBu The first steps of the reaction of P2(SiMe3)4 1 with LiBu in THF, which finally yields Li3P7 among other P-rich phosphides while P(SiMe3)3 and LiP(SiMe3)2 are simultaneously split off, were investigated by means of 31P-NMR spectroscopy. At ?20°C first of all one Si? P bond is cleaved generating Li(Me3Si)P? P(SiMe3)2 2 as well as BuSiMe3. Subsequently 2 forms Li(Me3Si)P? P(SiMe3)? P(SiMe3)2 5 and LiP(SiMe3)2 4 in equimolar ratios. This clearly demonstrates that both compounds are generated in one single reaction step. This behaviour is caused by the different basicity of the respective P-atoms in 2 , which necessarily results in a multicentered mechanism.  相似文献   

7.
Metallation of (HMe2Si)(Me3Si)2CH (1) by LiMe gave the organolithium compound Li(THF)2C(SiMe3)2(SiMe2H) (2a), which exists in toluene solution as a mixture of covalent species and ion pairs [Li(THF)4][Li{C(SiMe3)2(SiMe2H)}2] (2b). Treatment of a mixture of 1 and LiMe with KOBut gave KC(SiMe3)2(SiMe2H) (3). This reacted with AlMe2Cl in hexane/THF to give Al(THF)Me2{C(SiMe3)2(Si Me2H)} (4). Treatment of (HMe2Si)(PhMe2Si)2CH (5) with LiMe in Et2O/THF gave the THF adduct [Li(THF)2C(SiMe2Ph)2(SiMe2H)] (6); in the presence of KOBut the solvent-free [K][C(SiMe2Ph)2(SiMe2H)] (7) was obtained. Crystal structure determinations showed that 6 crystallizes in a molecular lattice and 7 in an ionic lattice in which the coordination sphere of the potassium comprises phenyl groups and hydrogen atoms attached to silicon, as well as the central carbon of the bulky carbanion. Compound 7 reacted with an excess of AlMe2Cl to give [AlClMe{C(SiMe2Ph)2(SiMe2H)}]2 (8) and AlMe3. A small amount of the methoxo derivative [Al(OMe)Me{C(SiMe2Ph)2(SiMe2H)}]2 (9) was obtained as a byproduct, presumably after the accidental admission of traces of air. X-ray structural determinations showed that 8 forms halogen-bridged dimers, with the bulky ligands in the anti-configuration, and 9 forms methoxo-bridged species in which the bulky ligands are syn.  相似文献   

8.
Investigations on the Reactivity of [Me2AlP(SiMe3)2]2 with Base‐stabilized Organogalliumhalides and ‐hydrides [Me2AlP(SiMe3)2]2 ( 1 ) reacts with dmap?Ga(Cl)Me2, dmap?Ga(Me)Cl2, dmap?GaCl3 and dmap?Ga(H)Me2 with Al‐P bond cleavage and subsequent formation of heterocyclic [Me2GaP(SiMe3)2]2 ( 2 ) as well as dmap?AlMexCl3?x (x = 3 8 ; 2 3 ; 1 4 ; 0 5 ). The reaction between equimolar amounts of dmap?Al(Me2)P(SiMe3)2 and dmap?Ga(t‐Bu2)Cl yield dmap?Ga(t‐Bu2)P(SiMe3)2 ( 6 ) and dmap?AlMe2Cl ( 3 ). 2 – 8 were characterized by NMR spectroscopy, 2 and 6 also by single crystal X‐ray diffraction.  相似文献   

9.
Preparation, Characterization and Reaction Behaviour of Sodium and Potassium Hydridosilylamides R2(H)Si—N(M)R′ (M = Na, K) — Crystal Structure of [(Me3C)2(H)Si—N(K)SiMe3]2 · THF The alkali metal hydridosilylamides R2(H)Si—N(M)R′ 1a‐Na — 1d—Na and 1a‐K — 1d‐K ( a : R = Me, R′ = CMe3; b : R = Me, R′ = SiMe3; c : R = Me, R′ = Si(H)Me2; d : R = CMe3, R′= SiMe3) have been prepared by reaction of the corresponding hydridosilylamines 1a — 1d with alkali metal M (M = Na, K) in presence of styrene or with alkali metal hydrides MH (M = Na, K). With NaNH2 in toluene Me2(H)Si—NHCMe3 ( 1a ) reacted not under metalation but under nucleophilic substitution of the H(Si) atom to give Me2(NaNH)Si—NHCMe3 ( 5 ). In the reaction of Me2(H)Si—NHSiMe3 ( 1b ) with NaNH2 intoluene a mixture of Me2(NaNH)Si—NHSiMe3 and Me2(H)Si—N(Na)SiMe3 ( 1b‐Na ) was obtained. The hydridosilylamides have been characterized spectroscopically. The spectroscopic data of these amides and of the corresponding lithium derivatives are discussed. The 29Si‐NMR‐chemical shifts and the 29Si—1H coupling constants of homologous alkali metal hydridosilylamides R2(H)Si—N(M)R′ (M = Li, Na, K) are depending on the alkali metal. With increasing of the ionic character of the M—N bond M = K > Na > Li the 29Si‐NMR‐signals are shifted upfield and the 29Si—1H coupling constants except for compounds (Me3C)(H)Si—N(M)SiMe3 are decreased. The reaction behaviour of the amides 1a‐Na — 1c‐Na and 1a‐K — 1c‐K was investigated toward chlorotrimethylsilane in tetrahydrofuran (THF) and in n‐pentane. In THF the amides produced just like the analogous lithium amides the corresponding N‐silylation products Me2(H)Si—N(SiMe3)R′ ( 2a — 2c ) in high yields. The reaction of the sodium amides with chlorotrimethylsilane in nonpolar solvent n‐pentane produced from 1a‐Na the cyclodisilazane [Me2Si—NCMe3]2 ( 8a ), from 1b‐Na and 1‐Na mixtures of cyclodisilazane [Me2Si—NR′]2 ( 8b , 8c ) and N‐silylation product 2b , 2c . In contrast to 1b‐Na and 1c‐Na and to the analogous lithium amides the reaction of 1b‐K and 1c‐K with chlorotrimethylsilane afforded the N‐silylation products Me2(H)Si—N(SiMe3)R′ ( 2b , 2c ) in high yields. The amide [(Me3C)2(H)Si—N(K)SiMe3]2·THF ( 9 ) crystallizes in the space group C2/c with Z = 4. The central part of the molecule is a planar four‐membered K2N2 ring. One potassium atom is coordinated by two nitrogen atoms and the other one by two nitrogen atoms and one oxygen atom. Furthermore K···H(Si) and K···CH3 contacts exist in 9 . The K—N distances in the K2N2 ring differ marginally.  相似文献   

10.
The compound (Me3Si)3CSiPh2F loses Me3SiF under reflux or on passage through a tube at 450°C to give three products, A, B, and C, in approximately 20/20/60 ratio. Products A and B, which are solids, were shown by X-ray crystallographic analysis to be the diastereoisomeric forms of 1-dimethylsila-2-trimethylsilyl-3-[(methyl)(phenyl)sila]indane. From its mass and 1H NMR spectra, C (a liquid) was tentatively identified as 1,3-bis(dimethylsila)-2-[(dimethyl)(phenyl)silyl]indane. All three products are isomers of the sila-olefin (Me3Si)2CSiPh2, and it is suggested that the latter is first formed by loss of Me3SiF from (MeSi)3CSiPh2F, and the equilibrium (Me3Si)2CSiPh2 ? (Me3Si)(Ph2MeSi)CSiMe2 ? (Me3Si)(PhMe2Si)CSiMePh ? (Me2PhSi)2CSiMe2 is then rapidly established; internal cyclizations involving addition of aryl CH bonds across SiC bonds then occur to give the observed products. Consistent with this is the observation that a mixture of silicon alkoxides, thought to be (Me3Si)2CHSiPh2OMe and its isomers (which would be formed by addition of methanol across the SiC bonds of the four sila-olefins) is produced when methanol is passed through the hot tube with the (Me3Si)3CSiPh2F.Full structural details are given for compounds A and B. Some features of interest are: (a) the conformation of the 5-membered ring is different in the two diastereoisomers; (b) the exocyclic SiCSiMe3 bond angles, of ca. 120° are unusually large; and (c) there is a little distortion of the fused benzene ring, which is attributed to the effect of silicon substituents on the hybridization of carbon atoms to which they are attached.  相似文献   

11.
Synthesis of the Silatetraphospholanes (tBuP)4SiMe2, (tBuP)4SiCl2, and (tBuP)4Si(Cl)SiCl3 Molecular and Crystal Structure of (tBuP)4SiCl2 The reaction of the diphosphide K2[(tBuP)4] 7 with the halogenosilanes Me2SiCl2, SiCl4 or Si2Cl6 in a molar ratio of 1:1 leads via a [4 + 1]-cyclocondensation reaction to the silatetraphospholanes (tBuP)4SiMe2 1,1-dimethyl-1-sila-2,3,4,5-tetra-t-butyl-2,3,4,5-tetraphospholane, 1 , (tBuP)4SiCl2, 1,1-dichloro-1-sila-2,3,4,5-tetra-t-butyl-2,3,4,5-tetraphospholane, 2 , and (tBuP)4Si(Cl)SiCl3, 1-chloro-1-trichlorsilyl-1-sila-2,3,4,5-tetra-t-butyl-2,3,4,5-tetraphospholane, 3 , respectively, with the 5-membered P4Si ring system. The reaction leading to 1 is accompanied with the formation of the by-product Me2(Cl)-Si–(tBuP)4–Si(Cl)Me2 1a (5:1), which has a chain structure. On warming to 100°C 1a decomposes to 1 and Me2SiCl2. The compounds 2 and 3 do not react further with an excess of 7 due to strong steric shielding of the ring Si atoms by the t-butyl groups. 1, 2 and 3 could be obtained in a pure form and characterized NMR spectroscopically; 2 was also characterized by a single crystal structure analysis. 1a was identified by NMR spectroscopy only.  相似文献   

12.
The synthesis of new dihaloheptasilanes X2Si[SiMe(SiMe3)2]2 (X=Cl: 2, Br: 3, I: 4) was performed by treating dihydridoheptasilane 1 (X=H) with CCl4, HCBr3 or HCI3. Difluoroheptasilane 6 (X=F) was prepared from either diphenylheptasilane 5 (X=Ph), triflic acid (HOTf), and LiF with concomitant isolation of heptasilanes 7 (X2=Ph and OTf), 8 (X2=F and Ph), and 9 (X2=F and OTf), or by halogen exchange from 2 using ZnF2. Crystal structures of 2, 3, 4, and 5 are reported. The reduction of 2 with Li, Na or KC8 resulted in the instantaneous formation of various cyclotrisilanes, while the reduction of 3 gave exclusively the unsymmetrical cyclotrisilane (E)-1-methyl-2,3,3-tris[methylbis(trimethylsilyl)silyl]-1,2-bis(trimethylsilyl)cyclotrisilane 10, which was characterized by X-ray crystallography. A mechanism for the formation of cyclotrisilanes via a silylsilylene-to-disilene rearrangement is proposed. Attempts to prepare the tetradekasilane [(Me3Si)2MeSi]2SiH–SiH[SiMe(SiMe3)2]2 (by reductive dehalogenation of either HClSi[SiMe(SiMe3)2]2 13 or HISi[SiMe(SiMe3)2]2 18), or the tetradekasilane [(Me3Si)2MeSi]2SiPh–SiPh[SiMe(SiMe3)2]2 (by reductive dehalogenation of either PhClSi[SiMe(SiMe3)2]2 14 or PhISi[SiMe(SiMe3)2]2 19) as precursors for the disilene [(Me3Si)2MeSi]2Si=Si[SiMe(SiMe3)2]2 failed. 14 was characterized by X-ray crystallography. All compounds described were also characterized by multinuclear NMR spectroscopy and elemental analysis.  相似文献   

13.
On the Reactivity of (η5-C5Me5)(CO)2FeP(SiMe3)2 Toward P-Chloromethylene phosphanes The reaction of (η5-C5Me5)(CO)2FeP(SiMe3)2 ( 2 ) with three equivalents of Cl? P?C(SiMe3)2 ( 3a ) afforded the 3-methanediyl-1,3,5,6-tetraphosphabicyclo[3.1.0]hex-2-ene (η5-C5Me5)(CO)2Fe? ( 6a ). In contrast, 2 reacts with two equivalents of Cl? P?C(Ph)SiMe3 ( 3b ) to give the thermolabile (η5-C5Me5) · (CO)2Fe? P[P?C(Ph)SiMe3]2 ( 4b ) which decomposed during the reaction with further 3b. 4 b was also obtained from (η5-C5Me5)(CO)2Fe? P(SiMe3)? P?C(SiMe3)2 ( 1a ) and two equivalents of 3b .  相似文献   

14.
Formation and Structure of the Cyclophosphanes P4(CMe3)2[P(CMe3)2]2 and P4(SiMe3)2[P(CMe3)2]2 n-Triphosphanes showing a SiMe3 and a Cl substituent at the atoms P1 and P2, like (Me3C)2P? P(SiMe3)? P(CMe3)Cl 3 or (Me3C)2P? P(Cl)? P(SiMe3)2 4 are stable only at temperatures below ?30°C. Above this temperature these compounds lose Me3SiCl, thus forming cyclotetraphosphanes, P4(CMe3)2[P(CMe3)2]2 1 out of 3 , P4(SiMe3)2[P(SiMe3)2]2 2a (cis) and 2b (trans) out of 4 . The formation of 1 proceeds via (Me3C)2P? P?PCMe3 5 as intermediate compound, which after addition to cyclopentadiene to give the Diels-Alder-adduct 6 (exo and endo isomers) was isolated. 6 generates 5 , which then forms the dimer compound 1 . Likewise (Me3C)2P? P?P-SiMe3 8 (as proven by the adduct 7 ) is formed out of 4 , leading to 2a (cis) and 2b (trans). Compound 1 is also formed out of the iso-tetraphosphane P[P(CMe3)2]2[P(CMe3)Cl] 9 , which loses P(CMe3)2Cl when warmed to a temperature of 20°C. 1 crystallizes monoclinically in the space group P21/a (no. 14); a = 1762.0(15) pm; b = 1687.2(18) pm; c = 1170.5(9) pm; β = 109.18(5)° and Z = 4 formula units in the elementary cell. The molecule possesses E conformation. The central four-membered ring is puckered (approx. symmetry 4 2m; dihedral angle 47.4°), thus bringing the substituents into a quasi equatorial position and the nonbonding electron pairs into a quasi axial position. The bond lengths in the four-membered ring of 1 (d (P? P) = 222.9 pm) are only slightly longer than the exocyclic bonds (221.8 pm). The endocyclic bond angles \documentclass{article}\pagestyle{empty}\begin{document}$ \bar \beta $\end{document}(P/P/P) are 85.0°, the torsion angles are ±33° and d (P? C) = 189.7 pm.  相似文献   

15.
Synthesis and Properties of Partially Silylated Tri- and Tetraphosphanes. Reaction of Lithiated Diphosphanes with Chlorophosphanes The reactions of Li(Me3Si)P? P(SiMe3)(CMe3) 1 , Li(Me3Si)P? P(CMe3)2 2 , and Li(Me3C)P? P(SiMe3)(CMe3) 3 with the chlorophosphanes P(SiMe3)(CMe3)Cl, P(CMe3)2Cl, or P(CMe3)Cl2 generate the triphosphanes [(Me3C)(Me3Si)P]2P(SiMe3) 4 , (Me3C)(Me3Si)P? P(SiMe3)? P(CMe3)2 6 , [(Me3C)2P]2P(SiMe3) 7 , and (Me3C)(Me3Si)P? P(SiMe3)? P(CMe3)Cl 8 . The triphosphane (Me3C)2P? P(SiMe3)? P(SiMe3)2 5 is not obtainable as easily. The access to 5 starts by reacting PCl3 with P(SiMe3)(CMe3)2, forming (Me3C)2 P? PCl2, which then with LiP(SiMe3)2 gives (Me3C)2 P? P(Cl)? P(SiMe3)2 11 . Treating 11 with LiCMe3 generates (Me3C)2P? P(H)? P(SiMe3)2 16 , which can be lithiated by LiBu to give (Me3C)2P? P(Li)? P(SiMe3)2 13 and after reacting with Me3SiCl, finally yields 5 . 8 is stable at ?70°C and undergoes cyclization to P3(SiMe3)(CMe3)2 in the course of warming to ambient temperature, while Me3SiCl is split off. 7 , reacting with MeOH, forms [(Me3C)2P]2PH. (Me3C)2P? P(Li)? P(SiMe3)2 18 , which can be obtained by the reaction of 5 with LiBu, decomposes forming (Me3C)2P? P(Li)(SiMe3), P(SiMe3)3, and LiP(SiMe3)2, in contrast to either (Me3C)2P? P(Li)? P(SiMe3)(CMe3) 19 or [(Me3C)2P]2PLi, which are stable in ether solutions. The Li phosphides 1 , 2 , and 3 with BrH2C? CH2Br form the n-tetraphosphanes (Me3C)(Me3Si)P? [P(SiMe3)]2? P(SiMe3)(CMe3) 23 , (Me3C)2P? [P(SiMe3)]2? P(CMe3)2 24 , and (Me3C)(Me3Si)P? [P(CMe3)]2? P(SiMe3)(CMe3) 25 , respectively. Li(Me3Si)P? P(SiMe3)2, likewise, generates (Me3Si)2P? [P(SiMe3)]2? P(SiMe3)2 26 . Just as the n-triphosphanes 4 , 5 , 6 , and 7 , the n-tetraphosphanes 23 , 24 , and 25 can be isolated as crystalline compounds. 23 , treated with LiBu, does nor form any stable n-tetraphosphides, whereas 24 yields (Me3C)2P? P(Li)? P(SiMe3)? P(CMe3)2, that is stable in ethers. With MeOH, 24 , forms crystals of (Me3C)2P? P(H)? P(SiMe3)? P(CMe3)2.  相似文献   

16.
On the Chemistry of the Titanium(III) Complex [{(Me3Si)2N}2TiCH2SiMe2NSiMe3]. Insertion Reactions into the Ti–C Bond and Redox Reactions [Na(12-crown-4)2][{(Me3Si)2N}2TiCH2SiMe2NSiMe3] ( 1 ) reacts with CO and the isonitrile CNCy (Cy = Cyclohexyl) under insertion into the Ti–C bond. After rearrangement planar five-membered titana(III)-heterocycles TiOCSiN and TiNCSiN with exocyclic C=CH2 groups are formed. On the other hand, the insertion of CNBut leads to the primary insertion product [Na(12-crown-4)2][{(Me3Si)2N}2TiC(NBut)CCH2SiMe2NSiMe3] ( 4 ) forming a new Ti(III)–C-bond. With NOBF4 the anion of 1 can be oxydized to form the molecular complex [{(Me3Si)2N}2TiCH2SiMe2NSiMe3] ( 5 ), while with phenylacetylene redox disproportionation occurs, in the course of which the mixed ligand complex [Na(12-crown-4)2][{(Me3Si)2N}2Ti(NSiMe3)(CH2SiMe2C≡C–Ph)] ( 6 ) can be isolated. 6 and the insertion products [Na(12-crown-4)2][{(Me3Si)2N}2TiOC(CH2)SiMe2NSiMe3] ( 2 ) and [Na(12-crown-4)2][{(Me3Si)2N}2TiNCyC(CH2)SiMe2NSiMe3] ( 3 ) are characterized by crystal structure determinations.  相似文献   

17.
Diamino-di-tert-butylsilanes - Building Blocks for Cyclic (SiN)2, (SiNBN)2, (SiN2Sn), and Spirocyclic (SiN2)2Si, (SiN2Sn)2S Compounds The aminochlorosilanes (Me3C)2SiClNHR ( 1 : R?H, 2 : R?Me) are obtained by the ammonolysis ( 1 ) respectively aminolysis ( 2 ) of di-tert-butyldichlorosilane in the n-hexane. The dilithium derivative of diamino-di-tert-butylsilane reacts with FSiMe2R′ ( 3 : R′?Me, 4 : R′?F) in a molar ratio 1 : 2 to give the 1,3,5-trisilazanes 3 and 4 , (Me3C)2SiNHSiMe2R′, in a molar ratio 1 : 1 with F3SiN(SiMe3)2 to give the 1,3-diaza-2,4-disilacyclobutane 5 , (Me3C)2Si(NH)2SiFN(SiMe3)2, and with F2BN(SiMe3)2 to give the 1,3,5,7-tetraaza-2,6-dibora-4,8-disilacyclooctane 6 , [(Me3C)2SiNH-BN(SiMe3)2-NH]2. The dilithium derivative of di-tert-butyl-bis(methylamino)silane reacts with SiF4 with formation of the 1,3,5-trisilazane 7 , (Me3C)2Si(NMeSiF3)2, and the spirocycic compound 8 , [(Me3C)2Si(NMe)2]2Si, with SnCl2 the cyclosilazane 9 , (Me3C)2SiNMe2 is obtained. The dilithium derivative of 3 reacts with SnCl2 to give the cyclo-1,3-diaza-2-sila-4-stannylen 10 , (Me3C)2Si(NSiMe3)2Sn. The oxidation of 10 with elemental sulfur leads to the formation of the spirocyclus 11 , [(Me3C)2Si(NSiMe3)2SnS]2.  相似文献   

18.
The synthesis and characterization of (Me3Si)2AsCH2RCH2As(SiMe3)2 [R = CH2 ( 1 ), SiMe2 ( 2 )] is described. Compound 1 reacts with four equivalents of Ph2GaCl to produce (3), whose structure was deduced by use of 1H and 13C{1H} NMR spectroscopy.  相似文献   

19.
Reaction of [(Me3Si)2CH]2Al? CH2? Al [CH(SiMe3)2]2 with Neopentyllithium: Formation of {[(Me3Si)2CH]2Al? CH2? Al [CH(SiMe3)2]2CH2CMe3} ? [Li(TMEDA)2]⊕ The recently synthesized methylene bridged dialuminium compound [(Me3Si)2CH]2Al? CH2? Al [CH(SiMe3)2]2 reacts with neopentyl lithium in the presence of TMEDA to give the stable {[(Me3Si)2CH]2Al? CH2? Al [CH(SiMe3)2]2CH2 · CMe3}? [Li(TMEDA)2]⊕ decomposing at 115°C. The aluminium atoms therein are not additionally bridged, but the new substituent is occupying a terminal position as detected by crystal structure determination. A compound is formed containing a saturated, fourfold coordinated neighbouring a formally unsaturated, threefold coordinated aluminium atom. Due to high sterical restrictions the Al? C bonds are lengthened up to 209.0(3) pm at the alanate site and the Al? C? Al angle in the methylene bridge is extraordinarily enlarged to 144.4(2)°.  相似文献   

20.
[WCl4(Me3Si? C?C? SiMe3)]2. Synthesis, I.R. Spectrum, and Crystal Structure The title compound is obtained from tungsten hexachloride and bis-trimethylsilyl acetylene in the presence of C2Cl4 in dichloro methane, forming green crystals. The complex is characterized by the mass spectrum, the i.r. spectrum, and by a structural analysis with the aid of X-ray diffraction data. [WCl4(Me3Si? C?C? SiMe3)]2 crystallizes triclinic in the space group P1 with one dimeric formula unit per unit cell (2 231 observed, independent reflexions, R = 4.6%). The cell dimensions are a = 928, b = 938, c = 1 080 pm; α = 115.3°, β = 91.9°, γ = 100.0°. The complex forms centrosymmetric dimers, the units being linked by chloro bridges of bond lengths W? Cl 244 and 272 pm. The trans-position to the long W? Cl bridge is occupied by the acetylene ligand which is bonded side-on with identical W? C bond lengths of 203 pm. Together with the three terminal chlorine ligands (mean W? Cl distance 231 pm) the tungsten atom achieves coordination number seven.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号