首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of the present study was to determine the effects of acetylation with different doses of acetic anhydride on the chemical composition and chosen functional properties of commercial pumpkin protein concentrate (PPC). The total protein content decreased as compared to unmodified samples. Electrophoretic analysis revealed that in the acetylated pumpkin protein, the content of the heaviest protein (35 kDa) decreased in line with increasing concentrations of modifying reagent. Acetylation of PPC caused a significant increase in water-binding and oil-absorption capacity and for emulsifying properties even at the dose of 0.4 mL/g. Additionally, an increase in foaming capacity was demonstrated for preparations obtained with 2.0 mL/g of acetic anhydride, whereas acetylation with 0.4 and 1.0 mL/g caused a decrease in protein solubility as compared to native PPC.  相似文献   

2.
Background: Nanotechnology application has widespread use in many products. Copper nanoparticles (CuNPs) are widely used in industrial applications. The present study was conducted to investigate the effect of the ethanolic saffron extract (ESE) as a natural antioxidant on the hepatotoxicity induced by CuNPs in male mice. Methods: The characterization of CuNPs was determined using ultraviolet–visible absorption spectroscopy, particle size analysis, zeta potential, Fourier-transform infrared spectroscopy, and electron microscope. The effect of saffron on the hepatotoxicity induced by CuNPs in mice was evaluated by evaluating the survival rate of the mice, oxidative stress, antioxidant capacity, DNA evaluation, as well as its effect on the histology and transmission electron microscope of the liver. Results: The results revealed that all parameters were affected in a dose-dependent manner by CuNPs. These effects have been improved when the treatment of CuNPs is combined with ethanolic saffron extract. Conclusions: We can conclude that saffron and its bioactive crocin portion can prevent CuNP-induced oxidative liver damage. This substance should be useful as a new pharmacological tool for oxidative stress prevention.  相似文献   

3.
Zedoary turmeric oil submicron emulsions were studied. The effects of the oil phase as a mixture (ternary) on the emulsion droplet size were investigated by means of the simplex lattice design. By optimizing the homogenization process and using only 1.2% soya lecithin, emulsions with 20% oil phase consisting of zedoary turmeric oil–MCT–soybean oil ratio of 0.5:0.25:0.25 with particle sizes in the range of 132–148 nm and moderate viscosity (3.6–4.0 mPa · s) could be prepared. These emulsions showed good stability over 6 months. This study showed the dominating influence of composition of the oil phase as well as the importance of the homogenizing conditions on processing and stability of the zedoary turmeric oil submicron emulsions.  相似文献   

4.
Low-calorie and low-fat foods have been introduced to the market to fight the increasing incidence of overweightness and obesity. New approaches and high-quality fat replacers may overcome the poor organoleptic properties of such products. A model of processed cheese spread (PCS) was produced as a full-fat version and with three levels of fat reduction (30%, 50%, and 70%). Fat was replaced by water or by corn dextrin (CD), a dietary fiber. Additionally, in the 50% reduced-fat spreads, fat was replaced by various ratios of CD and lactose (100:0, 75:25, 50:50, 25:75, and 0:100). The effect of each formulation was determined by measuring the textural (firmness, stickiness, and spreadability), rheological (flow behavior and oscillating rheology), tribological, and microstructural (cryo-SEM) properties of the samples, as well as the dynamic aroma release of six aroma compounds typically found in cheese. Winter’s critical gel theory was a good approach to characterizing PCS with less instrumental effort and costs: the gel strength and interaction factors correlated very well with the spreadability and lubrication properties of the spreads. CD and fat exhibited similar interaction capacities with the aroma compounds, resulting in a similar release pattern. Overall, the properties of the sample with 50% fat replaced by CD were most similar to those of the full-fat sample. Thus, CD is a promising fat replacer in PCS and, most likely, in other dairy-based emulsions.  相似文献   

5.
Mayonnaise is a semisolid oil-in-water emulsion comprised of egg yolk, oil, and vinegar. One main problem with mayonnaise is its high fat content, so efforts have been made to develop low-fat sauces with similar characteristics to real mayonnaise. The purpose of this study was to evaluate the effect of medium-chain triglycerides (MCTs) blended with edible oil (soybean and olive oil) on the rheological, physicochemical, and sensory properties of low-fat mayonnaise. The results revealed that the shear viscosity decreased with the increase in medium-chain fatty acid (MCFA) contents and decreased with an increasing shear rate. Tan δ was <1, and a semisolid fluid with shear-thinning behavior was formed. The oscillation frequency test showed that the MCFA-containing mayonnaise was viscoelastic. The particle size and oil droplet analyses revealed that the emulsion droplet size and distribution were not significantly different in the MCT group compared to the control. The sensory evaluation demonstrated that the MCFA-containing mayonnaise was acceptable. This study illustrates that MCTs are a good substitute to produce the proper physicochemical properties of mayonnaise.  相似文献   

6.
褚翔宇  王小永 《化学通报》2018,81(7):625-629
本文采用反溶剂沉淀法制备了玉米蛋白/吐温-20复合纳米颗粒。通过测定玉米蛋白/吐温-20复合纳米颗粒对姜黄素的包封率、稳定性及荧光光谱性质,考察了不同浓度吐温-20对玉米蛋白/吐温-20复合纳米颗粒包载姜黄素的影响规律。相比玉米蛋白纳米颗粒,玉米蛋白/吐温-20复合纳米颗粒能够显著提高姜黄素的包封率、稳定性、荧光发射光谱强度和各向异性。这些结果说明姜黄素通过疏水作用缔合于玉米蛋白/吐温-20复合纳米颗粒的疏水微区。吐温-20作为稳定剂不仅有助于生成粒径较小的玉米蛋白/吐温-20复合纳米颗粒,而且吐温-20与玉米蛋白的结合能够为姜黄素提供更适合的疏水缔合环境。  相似文献   

7.
Beet has been used as an ingredient for functional foods due to its high antioxidant activity, thanks to the betalains it contains. The effects of the addition of beet extract (liquid and lyophilized) on the physicochemical characteristics, color, antioxidant activity (AA), total betalains (TB), total polyphenols (TP), and total protein concentration (TPC) were evaluated on stirred yogurt. The treatments (T1-yogurt natural, T2-yogurt added with beet juice, T3-added extract of beet encapsulated with maltodextrin, and T4-yogurt added with extract of beet encapsulated with inulin) exhibited results with significant differences (p < 0.05). The highest TB content was observed in T2 (209.49 ± 14.91), followed by T3 (18.65 ± 1.01) and later T4 (12.96 ± 0.55). The highest AA was observed on T2 after 14 days (ABTS˙ 0.819 mM TE/100 g and DPPH˙ 0.343 mM TE/100 g), and the lowest was found on T1 at day 14 (ABTS˙ 0.526 mM TE/100 g and DPPH˙ 0.094 mM TE/100 g). A high content of TP was observed (7.13 to 9.79 mg GAE/g). The TPC varied between 11.38 to 12.56 µg/mL. The addition of beet extract significantly increased AA in yogurt, betalains being the main compounds responsible for that bioactivity.  相似文献   

8.
水热改性对氧化铝载体织构和表面性质的影响   总被引:2,自引:0,他引:2  
The alumina support was treated in the moderate aqueous hydrothermal condition to avoid from the excess growth of boehmite (AlOOH) crystals which usually results in the obvious decrease of the specific surface area (BET). The experimental results indicated that the hydrothermal treatment of the alumina support at 140 ℃ for 2 hours promoted the formation of the plate-like AlOOH crystallites on the surface of the support via dissolution-precipitation route. The occurrence of the nano plate-like structure led to the improvement in the structural and surface properties, such as the increase of the specific surface area, the surface hydroxyl concentration and the surface acidity.  相似文献   

9.
Collagen was extracted from the body wall of sea cucumber (Holothuria scabra) using the pepsin-solubilized collagen method followed by isolation using dialysis and the ultrafiltration membrane. The yield and physicochemical properties of the collagen obtained from both isolation methods, denoted as D-PSC and UF-PSC, were compared. The ultrafiltration method affords a higher yield of collagen (11.39%) than that of the dialysis (5.15%). The isolated collagens have almost the same amino acid composition, while their functional groups, referred to as amide A, B, I, II, and III bands, were in accordance with commercial collagen, as verified by Fourier Transform Infrared (FT-IR) spectroscopy. The UV-Vis absorption peaks at 240 nm and 220 nm, respectively, indicated that the collagens produced are type-I collagen. The D-PSC showed interconnecting sheet-like fibrils, while the UF-PSC exhibited a flaky structure with flat-sheets arranged very close to each other. The higher yield and comparable physicochemical properties of the collagen obtained by ultrafiltration as compared with dialysis indicate that the membrane process has high potential to be used in large-scale collagen production for food and pharmaceutical applications.  相似文献   

10.
Aqueous solutions containing sodium dodecyl sulphate, xanthan gum, and salt were characterized by ionic conductivity, viscosity, and surface tension methods. A preliminary experimental study was performed to evaluate the effect of the mixture compositions on the surface behavior of the mixed polymer/surfactant systems under different solution conditions. An experimental design using response surface method (RSM) was then applied to assess factors interactions and empirical models regarding the physicochemical responses variables (i.e., conductivity, surface tension and viscosity). The main effects of the three independent factors: SDS concentration (x1), NaCl concentration (x2) and xanthan concentration (x3) were determined using in particular a D-optimal design. The results show an important effect of the factors on responses; they also indicate that the synergetic action of surfactant, electrolyte and biopolymer greatly influences these properties. Analysis of variance (ANOVA) showed high variance coefficient (R 2 Avarnas , A. and Panagiotis , I. ( 2003 ) J. Colloid Int. Sci. , 258 : 102109 .[Crossref], [Web of Science ®] [Google Scholar]) values, thus, ensuring a satisfactory adjustment of the second-order regression model with the experimental data.  相似文献   

11.
12.
Solvate ionic liquid (SIL) synthesis and properties depend on a delicate balancing of cation-solvent and cation-anion interactions to produce materials containing only cation-solvent complexes and solvent-separated anions. Most SILs meeting these characteristics fall within the paradigm of oligomeric ethylene oxides (e.g. glymes and glycols) and lithium salts. Targeted functionalization of solvent molecules to achieve desired properties is a relatively unexplored avenue of research. Fluorinated solvents have significantly different electric charge distributions compared to their nonfluorinated analogs. We test the impact of solvent fluorination for a SIL created from equimolar mixtures of lithium bis(trifluoromethylsulfonyl)imide (LiNTf2) and triethylene glycol (TEG), hereafter [(TEG)1Li]NTf2. In the first experiment, TEG is partially substituted with 2,2,4,4,5,5,7,7-octafluoro-3,6-dioxaoctane-1,8-diol (FTEG). This leads to a precipitous decrease in ionic conductivity and larger quantities of ionically-associated Li(NTf2)2 species, as detected with vibrational spectroscopy. These observations suggest FTEG does not readily coordinate Li+ ions in a manner analogous to TEG. Computational studies reinforce this conclusion. Relative complex cation stabilities are ranked as [(FTEG)1Li]+>[(TEG)1Li]+. A second experiment adds FTEG as a diluent to [(TEG)1Li]NTf2. This places FTEG and TEG in competition to coordinate a limited number of Li+ ions. The resulting mixtures exhibit conductivity enhancement over the parent SIL and minimal changes in ion speciation due to the poor Li+ binding by FTEG compared to TEG. Positron annihilation lifetime spectroscopic studies point to increased amounts of free volume upon dilution of FTEG. This likely explains the origin of the conductivity and viscosity enhancements.  相似文献   

13.
This study aimed to assess the effect of milk source and bear garlic addition on the selected properties of soft rennet cheese. Cheeses were produced from cow milk derived from two sources: Polish Red cows (PR) and Polish Holstein-Friesian cows (PHF) with a 0.5% (w/w) addition of bear garlic (Allium ursinum L.) dried leaves. Chemical composition and fatty acid profiles (GC) were determined in fresh cheeses. Fresh and stored for two weeks cheeses were subjected to microbiological studies, i.e., total aerobic bacteria count (TABC); count of Lactococcus sp., yeast and molds; coliforms; analysis of the proteolysis extension by means of o-phthaldialdehyde (OPA) assay and free amino acids content (HPLC); antioxidant capacity as 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and ferric reducing antioxidant power (FRAP); as well as pH and water activity. Cheeses with bear garlic herbs were more prone to proteolysis but this was not accompanied by any effect on the microbial counts, water activity or pH. Cheeses produced from PR milk contained less monounsaturated fatty acids (MUFA) but were richer in n-3 PUFA and had a lower n-6/n-3 FA ratio than cheeses from PHF milk. Bear garlic addition increased DPPH anti-radical power but had less of an effect on the FRAP values.  相似文献   

14.
New carriers of phytosterols; acylglycerols containing natural myristic acid at sn-1 and sn-3 positions and stigmasterol residue linked to sn-2 position by carbonate and succinate linker have been designed and synthesized in three-step synthesis from dihydroxyacetone (DHA). The synthetic pathway involved Steglich esterification of DHA with myristic acid; reduction of carbonyl group of 1,3-dimyristoylpropanone and esterification of 1,3-dimyristoylglicerol with stigmasterol chloroformate or stigmasterol hemisuccinate. The structure of the obtained hybrids was established by the spectroscopic methods (NMR; IR; HRMS). Obtained hybrid molecules were used to form new liposomes in the mixture with model phospholipid and their effect on their physicochemical properties was determined, including the polarity, fluidity, and main phase transition of liposomes using differential scanning calorimetry and fluorimetric methods. The results confirm the significant effect of both stigmasterol-containing acylglycerols on the hydrophilic and hydrophobic region of liposome membranes. They significantly increase the order in the polar heads of the lipid bilayer and increase the rigidity in the hydrophobic region. Moreover, the presence of both acylglycerols in the membranes shifts the temperature of the main phase transition towards higher temperatures. Our results indicate stabilization of the bilayer over a wide temperature range (above and below the phase transition temperature), which in addition to the beneficial effects of phytosterols on human health makes them more attractive components of novel lipid nanocarriers compared to cholesterol.  相似文献   

15.
A new type of hydroxyalkyl starch, γ-hydroxypropyl starch (γ-HPS), was prepared by etherification of alkali-activated starch with 3-chloropropanol. The reaction efficiency, morphological change, thermodynamic and apparent viscosity properties, and other physicochemical characteristics were described. The molar substitution (MS) of modified whole starch was determined to be 0.008, 0.017, 0.053, 0.106, and 0.178, with a ratio of 5%, 15%, 25%, 35%, and 45% 3-chloropropanol to starch (v/w), respectively. Compared to native starch, the granular size and shape and the X-ray diffraction pattern of γ-HPS are not very different. For low-substituted γ-HPS, the implications may be less evident. Thermal stability measurements by means of thermogravimetric analyses and differential scanning calorimetry (TGA-DSC) proved that thermal stability was reduced and water retaining capacity was increased after hydroxypropylation. Furthermore, the findings also showed that the solubility, light transmittance, and retrogradation of γ-HPS pastes could be improved by etherification. The greater the MS of the γ-HPS, the more its freeze–thaw stability and acid resistivity increased. In this study, we provide relevant information for the application of γ-HPS in food and non-food industries.  相似文献   

16.
Heat-moisture treatment (HMT) changed the morphology and the degree of molecular ordering in lotus rhizome (Nelumbo nucifera Gaertn.) starch granules slightly, leading to some detectable cavities or holes near hilum, weaker birefringence and granule agglomeration, accompanied with modified XRD pattern from C- to A-type starch and lower relative crystallinity, particularly for high moisture HMT modification. In contrast, annealing (ANN) showed less impact on granule morphology, XRD pattern and relative crystallinity. All hydrothermal treatment decreased the resistant starch (from about 27.7–35.4% to 2.7–20%), increased the damage starch (from about 0.5–1.6% to 2.4–23.6%) and modified the functional and pasting properties of lotus rhizome starch pronouncedly. An increase in gelatinization temperature but a decrease in transition enthalpy occurred after hydrothermal modification, particularly for hydrothermal modification involved with HMT. HMT-modified starch also showed higher pasting temperature, less pronounced peak viscosity, leading to less significant thixotropic behavior and retrogradation during pasting-gelation process. However, single ANN treatment imparts a higher tendency of retrogradation as compared to native starch. For dual hydrothermally modified samples, the functional properties generally resembled to the behavior of single HMT-modified samples, indicating the pre- or post-ANN modification had less impact on the properties HMT modified lotus rhizome starch.  相似文献   

17.
用密度泛函理论(DFT)中的杂化密度泛函B3LYP方法, 在6-31G*水平上对Al8P8团簇的环状结构进行了几何结构优化, 并在同一水平上计算了Al8P8团簇的电子结构、振动特性及极化率和超极化率. 用自然键轨道(NBO)方法分析了成键性质, Al8P8团簇中离子键和共价键共存, 而且在不同轨道中原子间成键有不同的杂化方式. 计算结果表明: 优化后的Al8P8团簇为双层环状结构; 价电子态密度显示其电子结构具有半导体的性质; 最强的IR和Raman谱峰分别位于530.65 cm-1和366. 54 cm-1处.  相似文献   

18.
Due to the large molecular weight and complex structure of Laminaria japonica polysaccharides (LJP), which limit their absorption and utilization by the body, methods to effectively degrade polysaccharides had received more and more attention. In the present research, hot water extraction coupled with three-phase partitioning (TPP) was developed to extract and isolate LJP. Ultrasonic L. japonica polysaccharides (ULJP) were obtained by ultrasonic degradation. In addition, their physicochemical characteristics and in vitro biological activities were investigated. Results indicated that ULJP had lower weight-average molecular weight (153 kDa) and looser surface morphology than the LJP. The primary structures of LJP and ULJP were basically unchanged, both contained α-hexo-pyranoses and were mainly connected by 1,4-glycosidic bonds. Compared with LJP, ULJP had stronger antioxidant activity, α-amylase inhibitory effect and anti-inflammatory effect on RAW264.7 macrophages. The scavenging rate of DPPH free radicals by ULJP is 35.85%. Therefore, ultrasonic degradation could effectively degrade LJP and significantly improve the biological activity of LJP, which provided a theoretical basis for the in-depth utilization and research and development of L. japonica in the fields of medicine and food.  相似文献   

19.
Poor water solubility and low bioavailability of hydrophobic flavonoids such as rutin remain as substantial challenges to their oral delivery via functional foods. In this study, the effect of pH and the addition of a protein (sodium caseinate; NaCas) on the aqueous solubility and stability of rutin was studied, from which an efficient delivery system for the incorporation of rutin into functional food products was developed. The aqueous solubility, chemical stability, crystallinity, and morphology of rutin (0.1–5% w/v) under various pH (1–11) and protein concentrations (0.2–8% w/v) were studied. To manufacture the concentrated colloidally stable rutin–NaCas particles, rutin was dissolved and deprotonated in a NaCas solution at alkaline pH before its subsequent neutralisation at pH 7. The excess water was removed using ultrafiltration to improve the loading capacity. Rutin showed the highest solubility at pH 11, while the addition of NaCas resulted in the improvement of both solubility and chemical stability. Critically, to achieve particles with colloidal stability, the NaCas:rutin ratio (w/w) had to be greater than 2.5 and 40 respectively for the lowest (0.2% w/v) and highest (4 to 8% w/v) concentrations of NaCas. The rutin–NaCas particles in the concentrated formulations were physically stable, with a size in the range of 185 to 230 nm and zeta potential of −36.8 to −38.1 mV, depending on the NaCas:rutin ratio. Encapsulation efficiency and loading capacity of rutin in different systems were 76% to 83% and 2% to 22%, respectively. The concentrated formulation containing 5% w/v NaCas and 2% w/v rutin was chosen as the most efficient delivery system due to the ideal protein:flavonoid ratio (2.5:1), which resulted in the highest loading capacity (22%). Taken together, the findings show that the delivery system developed in this study can be a promising method for the incorporation of a high concentration of hydrophobic flavonoids such as rutin into functional foods.  相似文献   

20.
Five novel oligothiophene derivatives end‐capped by different functional groups (R=ethoxyl ( EtOP3T ), methylsulfanyl ( MSP3T ), acetyl ( AcP3T ), methylsulfonyl ( MSO2P3T ) and biphenyl ( BP3T ) groups) were synthesized. They were characterized by Hnuclear magnetic resonanceH (P1PH NMR), Hmass spectrometryH (MS) and Fourier transform Infra‐red spectra (IR). The relationship between end‐capping functional groups and optoelectronic properties of them was investigated. It was found that the compound with sulfonyl group in the molecular structure ( MSO R 2 R P3T ) shows the highest oxidation stability (also supported by theoretical calculations) and best thermal stability among the five compounds. The results of scanning electron microscope (SEM) interpret that MSO R 2 R P3T displays excellent ability of self‐film forming. This reveals that it could be a potential candidate for thin film material. The liquid crystal property of MSO R 2 R P3T was characterized by polarized optical microscopy analysis (POM) and X‐ray diffraction (XRD). The results of this paper provide useful information for the design of tailored oligothiophene derivatives for devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号