首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new chromatographic response function (CRF) is presented aiming at designing an optimal chromatographic separation protocol for assessing the molecular size distribution of complex organic mixtures, such as those of natural organic matter from different sources (atmospheric, aqueous, and terrestrial). This CRF can be applied to mixtures of unknown solutes, being well suited for describing separation processes of pair of peaks of highly unequal area, and also for overlapping and asymmetric peaks. The performance of the developed CRF was compared to that of an existing response function, using simulated chromatograms. The capability of the new function to qualify the resolution degree that it is attained under different chromatographic conditions was further assessed through a size-exclusion chromatography study of a variety of different organic compounds, via a two-level full factorial design. It was proved that this function is a reliable alternative to optimize simultaneously the composition of the mobile phase (pH, ionic strength, and organic modifier concentration) and the instrumental variables (flow rate).  相似文献   

2.
3.
4.
青霉素G酶促裂解液的高效液相色谱分析   总被引:1,自引:1,他引:1  
建立了用反相高效液相色谱测定青霉素G酶促裂解产物的方法。以与分离程度和分析时间有关的CRF为目标函数,用改进的单纯形法对流动相进行优化选择。结果表明本法快速、准确、简便。  相似文献   

5.
The separation optimization of nine organic and inorganic anions in tobacco leaves using gradient ion chromatography by response surface methodology was investigated.In order to achieve this goal the usefulness of the chromatographic response function(CRF) for the evaluation of the two different chromatographic performance goals(resolution and analysis time) was tested. The experiments were performed according to a Box-Behnken design response surface experimental design.  相似文献   

6.
Guillaume YC  Peyrin E 《Talanta》2000,51(3):579-586
A chemometric methodology is proposed to study the separation of seven p-hydroxybenzoic esters in reversed phase liquid chromatography (RPLC). Fifteen experiments were found to be necessary to find a mathematical model which linked a novel chromatographic response function (CRF) with the column temperature, the water fraction in the mobile phase and its flow rate. The CRF optimum was determined using a new algorithm based on Glover's taboo search (TS). A flow-rate of 0.9 ml min(-1) with a water fraction of 0.64 in the ACN-water mixture and a column temperature of 10 degrees C gave the most efficient separation conditions. The usefulness of TS was compared with the pure random search (PRS) and simplex search (SS). As demonstrated by calculations, the algorithm avoids entrapment in local minima and continues the search to give a near-optimal final solution. Unlike other methods of global optimisation, this procedure is generally applicable, easy to implement, derivative free, conceptually simple and could be used in the future for much more complex optimisation problems.  相似文献   

7.
Abstract

The tripartite “PRISMA” optimization model, as part of the “PRISMA” system, includes all possible solvent combinations between 1–4 solvents, with a possible fifth one as modifier. The solvent composition is characterized by the solvent strength (ST) and the selectivity points (PS).

At a constant ST the correlation between the PS and the retention data (horizontal function) can be described by a quadratic function. For constant PS the solvent strengths and retention data correlate (vertical function) with a logarithmic function. These correlations are used to formulate a mathematical model for the dependence of retention times (capacity factor) on the mobile phase composition. Unknown compounds are estimated in the mathematical model from a sequence of standard chromatograms after having identified individual peaks by an automatic procedure. Only retention times, relative peak areas, and information about the mobile phase compositions are required as input for the identification approach. The approach involves a combination of statistical methods which exploit both the basic properties of retention data and the mathematical relation between retention data, selectivity points, and solvent strength as derived from the “PRISMA” model. Diagnostic information for checking the identification is generated as a by-product. The mathematical model completed by the estimated constants predicts the expected retention times for each possible mobile phase combination. Peak start and peak end times are predicted in a way similar to the retention times, once the identification has been performed. The most important aspects of a chromatogram can thus be predicted for arbitrary mobile phases.

The separation quality of predicted chromatograms is assessed by the chromatographic response function (CRF). The optimal mobile phase combination is that which theoretically generates the chromatogram with the maximal CRF value. This optimal composition is found by a simple mathematical procedure, which maximises the CRF in dependence upon the mobile phase combination. The optimum found is a local one if the starting set of chromatograms contains no variation of the solvent strength, and a global one if, in the set of starting chromatograms, the solvent strength is varied in a suitable way. Recommendations for the starting position are given.

Twelve measurements are necessary for a local optimum, and 15 for the global one. To increase the accuracy, six measurements at three different solvent strength levels are proposed. Generally the highest and the lowest solvent strength level differ by ±(5)% from the middle level.

This strategy is also relevant when modifiers are used in constant amounts. The chromatographic behavior of substances to be separated can be predicted with 1% accuracy from correlations of k' values and selectivity points. Based on these relationships, an automatical mobile phase optimization strategy for isocratic separations is suggested with the “PRISMA” model.  相似文献   

8.
The addition of an ionic liquid into the mobile phase appeared to be useful in optimization of chromatographic separation of peptides. Different behavior of peptides in thin-layer chromatography (TLC) was observed after addition of 1-ethyl-3-methylimidazolium tetra fluoroborate to the eluent in comparison to the system without the ionic liquid. Nonlinear dependence of the retention coefficient, R(M), of peptides on the volume percentage of acetonitrile in the eluent was found in normal-phase TLC with and without immidazolium tetra fluoroborate in the mobile phase. In general, R(M) increased with increasing concentration of acetonitrile. In TLC systems without the ionic liquid, R(M) can be described well with a quadratic function. On the other hand, in a TLC system with an ionic liquid as the additive to the mobile phase, the retention behavior is better described with a third-degree polynomial function. The potential usefulness of ionic liquids for optimization of separation of peptides was demonstrated. Optimization of the separation conditions was supported by a commercially available computer program.  相似文献   

9.
The application of a silica hydride modified stationary phase with low organic loading has been investigated as a new type of chromatographic material suitable for the separation and analysis of peptides with electrospray ionization mass spectrometric detection. Retention maps were established to delineate the chromatographic characteristics of a series of peptides with physical properties ranging from strongly hydrophobic to very hydrophilic and encompassing a broad range of pI values (pI 5.5-9.4). The effects of low concentrations of two additives (formic acid and acetic acid) in the mobile phase were also investigated with respect to their contribution to separation selectivity and retention under comparable conditions. Significantly, strong retention of both the hydrophobic and the hydrophilic peptides was observed when high-organic low-aqueous mobile phases were employed, thus providing a new avenue to achieve high resolution peptide separations. For example, simultaneous separation of hydrophobic and hydrophilic peptides was achieved under aqueous normal phase (ANP) chromatographic conditions with linear gradient elution procedures in a single run, whilst further gradient optimization enabled improved peak efficiencies of the more strongly retained hydrophobic and hydrophilic peptides.  相似文献   

10.
11.
Diana J  Manyanga V  Hoogmartens J  Adams E 《Talanta》2006,70(5):1064-1072
The official method for the determination of dirithromycin and related substances in the European Pharmacopoeia (Ph. Eur.) and in the United States Pharmacopeia (USP) is an isocratic liquid chromatographic (LC) method using an ODS column. With this method, the separation of the main component dirithromycin from its epimer is not complete. Moreover, this method suffers sometimes from drift of the baseline and from subsequent quantitation problems. The required resolution is not easy to obtain.

Using an adapted method derived from the one prescribed in the pharmacopoeias, the selectivity of a set of more than 40 reversed-phase columns towards dirithromycin components was investigated. The selection of the most suitable column was achieved by the chromatographic response function (CRF) approach. Several changes were introduced to the method in order to improve the separation and to overcome the baseline drift problem. The resulting method uses a Zorbax Extend column maintained at 30 °C and a mobile phase containing acetonitrile, methanol, 2-propanol, water and a phosphate buffer at pH 7.5. The method allows a good separation of dirithromycin components, which is much better than that obtained with the existing methods. Several impurities of unknown identity are also separated. The method shows good repeatability, linearity and sensitivity, and it is robust. In addition, it proved to be applicable to a wide number of C18 reversed-phase columns.  相似文献   


12.
Nowadays, there are new technologies in high-performance liquid chromatography columns available enabling faster and more efficient separations. In this work, we compared three different types of columns for the analysis of main soy isoflavones. The evaluated columns were a conventional reverse phase particle column, a fused-core particle column, and a monolithic column. The comparison was in terms of chromatographic parameters such as resolution, asymmetry, number of theoretical plates, variability of retention time, and peak width. The lower column pressure was provided by the monolithic column, although lower chromatographic performance was achieved. Conventional and fused-core particle columns presented similar pressure. Results also indicate that direct transfer between particle and monolithic columns is not possible requiring adjustment of conditions and a different method optimization strategy. The best chromatographic performance and separation speed were observed for the fused-core particle column. Also, the effect of sample solvent on the separation and peak shape was evaluated and indicated that monolithic column is the most affected especially when using higher concentrations of acetonitrile or ethanol. Sample solvent that showed the lowest effect on the chromatographic performance of the columns was methanol. Overall evaluation of methanol and acetonitrile as mobile phase for the separation of isoflavones indicated higher chromatographic performance of acetonitrile, although methanol may be an attractive alternative. Using acetonitrile as mobile phase resulted in faster, higher resolution, narrower, and more symmetric peaks than methanol with all columns. It also generated the lower column pressure and flatter pressure profile due to mobile phase changes, and therefore, it presents a higher potential to be explored for the development of faster separation methods.  相似文献   

13.
14.
Summary A systematic approach, using a mixture-design statistical technique, has been developed for selecting the optimum mobile phase for the separation of fat-soluble vitamins in reversed-phase high-performance liquid chromatography. A quaternary mixture of methanol, acetonitrile, tetrahydrofuran and water was used as mobile phase. Retention time and peak width were recorded in ten runs augmented with five replicates and the data were subsequently fitted to special cubic polynomial models. The resulting mathematical equations enabled prediction of resolution over the entire parameter space. Contour plots of minimum effective resolution and maximum retention time as a function of mobile phase composition are presented and discussed. Visual inspection of these plots provides an overview of the quality of the separation and the analysis time required for each possible mobile-phase composition with n the parameter space. It is demonstrated that the methodology followed was an important tool which enabled the taking of informed decisions necessary for selection of the optimum mobile phase for a chromatographic separation. A combination ofR S minimum andt R maximum as optimization criteria in a multicriteria decision-making plot using pareto-optimality concept is discussed. This combination enabled visual demonstration of the compromise between separation quality and the economics of analysis time. Our methodology has been compared with the common used technique of ‘overlapping resolution mapping’.  相似文献   

15.
16.
A novel approach is proposed for the simultaneous optimization of mobile phase pH and gradient steepness in RP‐HPLC using artificial neural networks. By presetting the initial and final concentration of the organic solvent, a limited number of experiments with different gradient time and pH value of mobile phase are arranged in the two‐dimensional space of mobile phase parameters. The retention behavior of each solute is modeled using an individual artificial neural network. An “early stopping” strategy is adopted to ensure the predicting capability of neural networks. The trained neural networks can be used to predict the retention time of solutes under arbitrary mobile phase conditions in the optimization region. Finally, the optimal separation conditions can be found according to a global resolution function. The effectiveness of this method is validated by optimization of separation conditions for amino acids derivatised by a new fluorescent reagent.  相似文献   

17.
The prediction of optimal conditions of the preparative HPLC separation of the enantiomers of a pharmaceutical intermediate was accomplished by employing analytical chromatographic data, i.e. sample injections at low concentrations. Various temperatures and mobile phase conditions were studied. It was assumed that the sample loadability of the stationary phase is constant for a constant value of the separation factor and different mobile phase conditions and temperatures. Using this assumption, possible production rates can be compared for different method conditions. Overloading experiments were carried out to verify that the procedure employed is adequate. It was found that the optimization approach used, changing the mobile phase composition and temperature to achieve the shortest cycle time while keeping the separation factor constant, could be applied to improve the production rate of the separation.  相似文献   

18.
Sultan SM  El-Mubarak AH 《Talanta》1996,43(4):569-576
An accurate high performance liquid chromatography method for the separation and quantification of a solution mixture of nitrazepam, diazepam and medazepam and medazepam was developed. The modified simplex program has been utilized for the optimization of the chemical and chromatographic parameters using the chromatographic response function as the quality criterion and a photodiode array as a detector. The separation was achieved in 2 min using a 20 cm long, 4.6 mm diameter Lichrosorb C18 reverse phase column. A 5 mul solution mixture containing 10 ppm of each drug was injected into a mobile phase containing 89:11 v/v acetonitrile: acetate buffer and a flow rate of 3.44 ml min(-1) was found to be optimal. The method was found to be suitable for the determination of these compounds in proprietary drugs without suffering interferences.  相似文献   

19.
The sequential simplex algorithm was used to optimize the ion-pair reversed phase high performance liquid chromatographic (IP-RPHPLC) analysis of 4-(2-pyridylazo)resorcinol (PAR) chelates of Co(II), Ni(II) and Cr(III). A chromatographic response function (CRF) which included the number of peaks, the resolution between adjacent peaks, a specified analysis time, and the individual retention times relative to a minimum retention time, was calculated to evaluate the quality of the individual chromatograms. The optimum conditions for the three experimental parameters were 28.6% acetonitrile in the mobile phase, 3.0 mmol l(-1) concentration of acetate buffer at pH 6.0, and 5.2 mmol l(-1) tetrabutylammonium bromide (TBABr). Optimum conditions were achieved in only 19 experiments. The order of elution was Co(II)PAR, Cr(III)PAR and Ni(II)PAR, respectively, with an analysis time of 15 min.  相似文献   

20.
以大黄酸为原料,γ-氨丙基三乙氧基硅烷(KH-550)为偶联剂,简便制备了一种新型羧基键合硅胶固定相(RBSP),并用红外光谱、热重分析及元素分析对其结构进行表征.考察了流动相中甲醇含量对键合固定相色谱性能的影响,并以含酸性、中性和碱性化合物的混合物为溶质,评价了RBSP的色谱性能.以甲醇-水为流动相,用C18柱作参比,研究了该键合硅胶作为HPLC固定相对两种大豆异黄酮化合物和几种生物碱基的分离,并对其色谱分离机理进行了初步探讨.实验结果表明,该固定相(RBSP)具有较好的反相色谱性能,同时由于键合相中含有酚羟基及酰胺基团,能为多种溶质提供作用位点,对极性化合物的分离具有明显优势,且分离速度快,可有效用于极性化合物的分离分析.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号