首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Use of technology in science and mathematics classes has been increasing, but there are differences in the amount of use of and students' perceptions of its helpfulness across grade levels and subject areas. Technology was reported as used only occasionally. Technology was used most often to understand or explore in more depth concepts taught in class. The second most frequent use was as a tool of investigation or assessment. The lowest reported use of technology was as tool of communication. Students in middle school classes perceived technology as less helpful than did students in elementary or high school classes. Students in mathematics classes perceived technology as more helpful than did students in science classes. Girls perceived technology as more helpful than did boys. Additionally, teacher and student perceptions of amount of use varied with teachers reporting more use than students.  相似文献   

2.
Margaret Kendal  Kaye Stacey 《ZDM》2002,34(5):196-203
In the near future many teachers may be required to incorporate CAS into their teaching practices. Based on classroom observations and interviews over two years, this paper reports how two teachers made the transition from using graphics calculators to CAS calculators while teaching differential calculus to upper secondary school students. Both teachers taught with CAS in ways that were consistent with their beliefs about learning and teaching. Over two years, the teachers' teaching approaches and purpose for use of technology were stable and seemed to be underpinned by their beliefs about learning. In contrast, both teachers made changes to the content they taught (and thus what they used technology for) in response to new institutional knowledge. Content choice seemed to be underpinned by the teachers' purpose for teaching. Other influences impacted on what the teachers taught and how they taught it: the teachers' content knowledge, their pedagogical content knowledge, and the lack of legitimacy of CAS as a tool for learning and during examinations in the trial school and wider educational community. The extent of differences noted between the responses of just two teachers indicates that there will be many responses to using CAS in classrooms, as teachers aim to achieve different learning goals and interpret their responsibilities to students in different ways.  相似文献   

3.
The use of mathematics analysis software (MAS) including handheld scientific and graphics calculators offers a range of pedagogical opportunities. Its use can support change in the didactic contract. MAS may become an alternative source of authority in the classroom empowering students to explore variation and regularity, manipulate simulations and link representations. Strategic use may support students to direct their own learning and explore mathematics, equipping them to share their findings with the teacher and the class with more confidence. This paper offers a framework for examining the impact of the use of MAS on the didactic contract. Lessons were observed in 12 grade 10 classes, with 12 different teachers new to MAS. MAS technology was used with a variety of didactic contracts, mostly traditional. The framework drew attention to many ways in which the teaching differed. Analysis of the didactic contract must consider both the teaching of mathematics and of technology skills, because these have different characteristics. In all classes, both teachers and students saw the teacher as having a responsibility to teach technology skills. Students saw technology skills as the main point of the lesson, but the teachers saw the lesson as primarily teaching mathematics—one of the mismatches which may need negotiation to adapt didactic contracts to teaching with MAS.  相似文献   

4.
The purpose of this phenomenological study was to explore how science teachers who persisted in urban schools interpreted and responded to the unique features of urban educational contexts. With 17 alumni who taught in metropolitan areas across seven states, the Science Educators for Urban Schools (SEUS) program provided a research setting that offered a unique view of science teachers’ development of knowledge of urban education contexts. Data sources included narratives of teaching experiences from interviews and open‐ended survey items. Findings were interpreted in light of context knowledge for urban educational settings. Findings indicated that science teaching in urban contexts was impacted by the education policy context, notably through accountability policies that narrowed and marginalized science instruction; community context, evident in teacher efforts to make science more relevant to students; and school contexts, notability their ability to creatively adjust for resource deficiencies and continue their own professional growth. Participants utilized this context knowledge to transform student opportunities to learn science. The study suggests that future science education research and teacher preparation efforts would benefit from further attention to the unique elements of urban contexts, specifically the out of classroom contexts that shape science teaching and learning.  相似文献   

5.
Visions of science teaching and learning in the newest U.S. standards documents are dramatically different than those found in most classrooms. This research addresses these differences through closely examining one professional development (PD) project that connects teacher learning and teacher practice with student learning/achievement. This study examines the effects on eighth grade science teachers and their students in the context of a PD focused on the integration of information communication technologies and reformed science teaching practices. Findings from this investigation suggest that teachers who participated in PD for two years learned more about technology, improved their practice, and their students’ achievement was significantly higher compared to teachers who participated in one year of the PD or non‐participating peers. Science educators face multiple challenges as they attempt to deliver instruction in fundamentally different ways than what they experienced as learners. The delivery of this professional learning suggest that PD for science teachers should include educative learning experiences if understandings of reforms supported by research are to be realized.  相似文献   

6.
This mixed-methods study describes classroom characteristics and student outcomes from university mathematics courses that are based in mathematics departments, targeted to future pre-tertiary teachers, and taught with inquiry-based learning (IBL) approaches. The study focused on three two-term sequences taught at two research universities, separately targeting elementary and secondary pre-service teachers. Classroom observation established that the courses were taught with student-centred methods that were comparable to those used in IBL courses for students in mathematics-intensive fields at the same institutions. To measure pre-service teachers' gains in mathematical knowledge for teaching, we administered the Learning Mathematics for Teaching (LMT) instrument developed by Hill, Ball and Schilling for in-service teacher professional development. Results from the LMT show that pre-service teachers made significant score gains from beginning to end of their course, while data from interviews and from surveys of learning gains show that pre-service teachers viewed their gains as relevant to their future teaching work. Measured changes on pre-/post-surveys of attitudes and beliefs were generally supportive of learning mathematics but modest in magnitude. The study is distinctive in applying the LMT to document pre-service teachers' growth in mathematical knowledge for teaching. The study also suggests IBL is an approach well suited to mathematics departments seeking to strengthen their pre-service teacher preparation offerings in ways consistent with research-based recommendations.  相似文献   

7.
This exploratory case study investigates relationships between use of an inquiry‐based instructional style and student scores on standardized multiple‐choice tests. The study takes the form of a case study of physical science classes taught by one of the authors over a span of four school years. The first 2 years were taught using traditional instruction with low levels of inquiry (non‐inquiry group), and the last 2 years of classes were taught by inquiry methods. Students' physical science test scores, achievement data, and attendance data were examined and compared across both instructional styles. Results suggest that for this teacher the use of an inquiry‐based teaching style did not dramatically alter students' overall achievement, as measured by North Carolina's standardized test in physical science. However, inquiry‐based instruction had other positive effects, such as a dramatic improvement in student participation and higher classroom grades earned by students. In additional inquiry‐based instruction resulted in more uniform achievement than did traditional instruction, both in classroom measures and in more objective standardized test measures.  相似文献   

8.
This paper reports the results of a project in which experienced middle grades mathematics teachers immersed themselves in calculator and computer use for both doing and teaching mathematics and prepared themselves as leaders for communicating their knowledge to colleagues. Project evaluation included formal observation of students while they used technology in learning mathematics. Classroom observation data suggested that computers hold somewhat more attraction for students than calculators. Overall, students in all 13 classes, independent of the type of technology used, were observed to be off-task 3% of the time. These data suggested a classroom environment in which the teacher worked hard to engage students in mathematical activity. The fact that students were observed off-task so little is encouraging. The difference in off-task behaviors for calculators versus computers suggests that different technologies will indeed have different effects on students. It appears that the introduction of technologies in classrooms altered the ways teachers taught.  相似文献   

9.
This study examined student mathematical engagement through the intended and enacted lessons taught by two teachers in two different middle schools in Indonesia. The intended lesson was developed using the ELPSA learning design to promote mathematical engagement. Based on the premise that students will react to the mathematical tasks in the forms of words and actions, the analysis focused on identifying the types of mathematical engagement promoted through the intended lesson and performed by students during the lesson. Using modified Watson's analytical tool (2007), students’ engagement was captured from what the participants’ did or said mathematically. We found that teachers’ enacted practices had an influence on student mathematical engagement. The teacher who demonstrated content in explicit ways tended to limit the richness of the engagement; whereas the teacher who presented activities in an open-ended manner fostered engagement.  相似文献   

10.
Research indicates that teacher efficacy influences student achievement and is situation specific. With the Next Generation Science Standards calling for the incorporation of engineering practices into K–12 classrooms, it is important to identify teachers’ engineering teaching efficacy. A study of K–5 teachers’ engineering self‐efficacy and engineering teaching efficacy revealed that that they have low engineering self‐efficacy and low teacher efficacy related to engineering pedagogical content knowledge. Additionally, significant differences existed in self‐efficacy levels based on gender, ethnicity, Title I school status, and grade level taught.  相似文献   

11.
In undergraduate mathematics courses, pre-service elementary school teachers are often faced with the task of re-learning some of the concepts they themselves struggled with in their own schooling. This often involves different cognitive processes and psychological issues than initial learning: pre-service teachers have had many more opportunities to construct understandings and representations than initial learners, some of which may be more complex and engrained; pre-service teachers are likely to have created deeply-held–and often negative–beliefs and attitudes toward certain mathematical ideas and processes. In our recent research, we found that pre-service teachers who used a particular computer-based microworld, one emphasising visual representations of and experimental interactions with elementary number theory concepts, overcame many cognitive and psychological difficulties reported in the literature. In this study, we investigate the possibilities of using a similarly-designed microworld that involves a set of rational number concepts. We describe the affordances of this microworld, both in terms of pre-service teacher learning and research on pre-service teacher learning, namely, the helpful “window” it gave us on the mathematical meaning-making of pre-service teachers. We also show how their interactions with this microworld provided many with a new and aesthetically-rich set of visualisations and experiences.  相似文献   

12.
The aim of this study was to consider the match of student statistical understanding and teacher pedagogical content knowledge in relation to sample size and likelihood. Students were given two contexts within which to compare the likelihood of events for different sample sizes. Teachers were presented with one of the contexts and asked what their students would do and how they would remediate incorrect responses. The data also provided the opportunity for a detailed hierarchical analysis of students’ and teachers’ understandings. Analysis of student solutions revealed a wide range of reasoning, some of which was apparently unfamiliar to teachers.  相似文献   

13.
Previous studies have produced several typologies of teacher questions in mathematics. Probing questions that ask students to explain are often included in the types of questions. However, only rare studies have created subtypes for probing questions or investigated how questioning differs depending on whether technology is used or not. The aims of this study are to elaborate on different ways of asking students to give explanations in inquiry-based mathematics teaching and to investigate whether questioning in GeoGebra lessons differs from questioning in other lessons. Data was collected by video recording 29 Finnish mathematics student teachers’ lessons in secondary and upper secondary schools. The lesson videos were coded for the student teachers’ probing questions. After this, categories for the types of probing questions were created, which is elaborated in this paper. It was found that the student teachers who used GeoGebra emphasized conceptual probing questions during the explore phase of a lesson slightly more than the other student teachers.  相似文献   

14.
We analyze how three seventh grade mathematics teachers from a majority Latino/a, linguistically diverse region of Texas taught the same lesson on interpreting graphs of motion as part of the Scaling Up SimCalc study (Roschelle et al., 2010). The students of two of the teachers made strong learning gains as measured by a curriculum-aligned assessment, while the students of the third teacher were less successful. To investigate these different outcomes, we compare the teaching practices in each classroom, focusing on the teachers’ use of class time and instructional format, their use of mathematical discourse practices in whole-class discussions, and their responses to student contributions. We show that the more successful teachers allowed time for students to use the curriculum and software and discuss it with peers, that they used formal mathematical discourse along with less formal language, and that they responded to student errors using higher-level moves. We conclude by discussing implications for teachers and mathematics educators, with special attention to issues related to the mathematics education of Latinos/as.  相似文献   

15.
An important goal of mathematics education reform is to support teacher learning. Toward this end, researchers and teacher educators have investigated ways in which teachers learn about mathematical content, pedagogical strategies, and student thinking as they implement reform. This study extends such work by examining how one elementary school and one high school teacher learned from students' interpretations of new conceptually based representations contained in instructional materials aligned with the Principles and Standards for School Mathematics ( National Council of Teachers of Mathematics, 2000 ). Results indicated that teaching with new representations provided a rich context for teacher learning at both the elementary and high school level, and three dimensions were identified along which such learning occurred. The results suggest that pedagogical content knowledge with respect to representations is an important facet of teacher cognition that should be studied in greater depth.  相似文献   

16.
17.
Linear systems of equations are used to model relationships in both science and mathematics. Studies have shown that gaps exist in student understanding of important ideas about such systems. Students show weaknesses in understanding the connections between algebraic and geometric representations, the impact of scaling and approximation methods, and the validity of methods like Gaussian elimination. As demonstrated with the activities presented in this article, current technology allows readily accessible representations in algebraic, numeric, and geometric forms. Integrating these different representations into our curriculum helps students to think more critically about systems, to foster new perspectives, to feel more confident in their results, and to understand better the relations between different representations.  相似文献   

18.
In this study we examined how teacher praise varies across and within four middle school mathematics classrooms in relationship to mathematical competence. We then conceptualized how teacher praise contributes to the co-construction of normative identity: the class’ shared understanding of what counts as being a competent learner in a mathematics classroom. Findings revealed teachers rarely used person-based praise (e.g., “you’re smart”) and frequently gave generic praise (e.g., “good”). Each teacher’s praise patterns supported different co-constructions of mathematical competence. Although some teachers taught the same lessons or ascribed to similar pedagogical approaches, findings suggest teachers’ praise patterns may contribute to the co-construction of different normative identities, some more exclusive and others more inclusive. Findings indicate praise may be a low-stakes and potentially impactful teacher practice with implications for students’ understanding of what it means to be good at math.  相似文献   

19.
For students to develop an understanding of functions, they must have opportunities to solve problems that require them to transfer between algebraic, numeric, and graphic representations (transfer problems). Research has confirmed student difficulties with certain types of transfer problems and has suggested instructional factors as a possible cause. Algebra teachers (n= 28) were surveyed to determine the amount of class time they devote to different types of transfer problems and how many times these problems appear on their teacher‐made assessments. Results suggest that teachers dedicate less class time to graphic to numeric transfer problems than to any other type of transfer problem and that these problems appear less frequently on assessments. These are exactly the types of transfer problems that pose the most difficulty for students. It is conjectured that teachers' familiarity with these problems, combined with assumed student mastery, contribute to this mismatch.  相似文献   

20.
Berinderjeet Kaur 《ZDM》2009,41(3):333-347
This paper examines the instructional approaches of three competent grade 8 mathematics teachers. It also examines their students’ perception of the lessons they taught as well as characteristics of good lessons. The findings of teachers’ practice and students’ perception are juxtaposed to elicit characteristics of good teaching in Singapore grade 8 classrooms. With limitation, the findings of the paper suggests that good mathematics teaching in Singapore schools centres around building understanding and is teacher-centred but student focused. Some characteristic features of good lessons are that their instructional cycles have specific instructional objectives such that subsequent cycles incrementally build on the knowledge. The examples used in such lessons are carefully selected and vary in complexity from low to high. Teachers actively monitor their student’s understanding during seatwork, by moving from desk to desk guiding those with difficulties and selecting appropriate student work for subsequent whole-class review and discussion. Finally, during such lessons teachers reinforce their students’ understanding of knowledge expounded during whole-class demonstration by detailed review of student work done in class or as homework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号