首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We use the master stability formalism to discuss one- and two-cluster synchronization of coupled Tchebycheff map networks. For diffusively coupled map systems, the one-cluster synchronized dynamics is given by the behaviour of the individual maps, and the coupling only determines the stability of the coherent state. For the case of non-diffusive coupling and for two-cluster synchronization, the synchronized dynamics on networks is different from the behaviour of the single individual map. Depending on the coupling, we study numerically the characteristics of various forms of the resulting synchronized dynamics. The stability properties of the respective one-cluster synchronized states are discussed for arbitrary network structures. For the case of two-cluster synchronization on bipartite networks we also present analytical expressions for fixed points and zig-zag patterns, and explicitly determine the linear stability of these orbits for the special case of ring-networks.  相似文献   

2.
Dirk Hennig 《Applicable analysis》2013,92(14):2511-2524
We prove the existence of time-periodic solutions representing breathing patterns in general nonlinear Hamiltonian finite-size lattices with global coupling. As a first step the existence of localised solutions of a two site segment, where one oscillator performs larger-amplitude motion compared to the other one, is established. To this end the existence problem is converted into a fixed point problem for an operator on some appropriate function space which is solved by means of Schauder’s Fixed Point Theorem. For isoenergetic states the degree of localisation can be tuned in a wide range by changing the initial data and the coupling strength. Subsequently, it is proven that a related localised state can be excited in the extended nonlinear lattice forming a breathing pattern with a single site of large amplitude against a background of uniform small-amplitude states. Furthermore, it is demonstrated that also spatial patterns are possible that are built up from any combination of the small-amplitude state and the large-amplitude state.  相似文献   

3.
This paper presents a general model of singular complex switched networks, in which the nodes can be singular dynamic systems and switching behaviors act on both nodes and edges. The parametric uncertainties and unknown coupling topologies are also considered in this model. Two robust synchronization schemes are discussed respectively. In one scheme, the network is synchronized to a homogeneous orbit and in the other one the network is synchronized to a weighted average of all the nodes. Based on the Lyapunov stability theory, different robust synchronization conditions for the two schemes are obtained for this singular complex switched network model via impulsive control. The similarities and differences between these synchronization conditions for the two schemes are discussed. In addition, three useful robust results for the special cases of the singular complex switched networks are presented. Two systematic-design procedures are presented for the two schemes, and three numerical examples are provided for illustrations.  相似文献   

4.
Many problems in engineering, physics or other disciplines require an integrated treatment of coupled fields. These problems are characterised by a dynamic interaction among two or more physically or computationally distinct components, where the undergoing mathematical model commonly consists of a system of coupled PDE. Considerable progress has been made in the development of appropriate computational schemes to solve such coupled PDE systems. These attempts have resulted in various monolithic and decoupled numerical solution approaches. Despite the unconditional stability offered by implicit monolithic solution strategies, their use is not always recommended. The reason mainly lies in the complexity of the resulting system of equations and the limited flexibility in choosing appropriate time integrators for individual components. This has motivated the elaboration of tailored decoupled solution schemes, which follow the idea of splitting the problem into several sub-problems. But selection of the way of splitting can have a direct influence on the stability of the resulting solution algorithm. This necessitates the stability analysis of such an algorithm. Here, we introduce a general framework for the stability analysis of decoupled solution schemes. The approach is then used to study the stability behaviour of established decoupling strategies applied to typical volume- and surface-coupled problems, namely, coupled problems of thermoelasticity, porous media dynamics and structure-structure interaction. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
In this article,we consider the global chaotic synchronization of general coupled neural networks,in which subsystems have both discrete and distributed delays.Stochastic perturbations between subsyste...  相似文献   

6.
Based on the Trotter-Kato approximation theorem for strongly continuous semigroups we develop a general framework for the approximation of delay systems. Using this general framework we construct two families of concrete approximation schemes. Approximation of the state is done by functions which are piecewise polynomials on a mesh (m-th order splines of deficiency m). For the two families we also prove convergence of the adjoint semigroups and uniform exponential stability, properties which are essential for approximation of linear quadratic control problems involving delay systems. The characteristic matrix of the delay system is in both cases approximated by matrices of the same structure but with the exponential function replaced by approximations where Padé fractions in the main diagonal resp. in the diagonal below the main diagonal of the Padé table for the exponential function play an essential role.  相似文献   

7.
Du  Zengji  Zhang  Xiaoni  Zhu  Huaiping 《Journal of Nonlinear Science》2020,30(4):1553-1577

In this paper, we deal with Sel’kov model with saturation law which has been applied to numerous problems in chemistry and biology. We will study the stability of the unique constant steady state, existence and nonexistence of nonconstant steady states of such models. In particular, we prove that Turing pattern may occur when the saturation coefficient is small but will not occur when the coefficient becomes large. Therefore for a Sel’kov model with saturation law, it is the saturation law that determines the formation of spatial patterns.

  相似文献   

8.
Two aerodynamically excited pendula are considered as a simple example of two linearly coupled, self sustained mechanical oscillators, modelled by two coupled Van-der-Pol equations. The considered mechanical application admits of a systematic survey of synchronized regimes within the framework of standard nonlinear stability analysis. Using normal form theory and the prevailing direct averaging approach the occurring Hopf bifurcation with two distinct pairs of purely imaginary eigenvalues is studied in the non-resonant case and in the 1:1-resonance corresponding, respectively, to strong and weak coupling. In particular, for the resonant case a graphical approach permits a comprehensive interpretation relating the stable stationary solutions of the averaged system with synchronized regimes and allows an analytical computation of the oscillation amplitudes and the synchronous frequency.  相似文献   

9.
To understand the competition between what are known as limit cycle and strange attractor dynamics, the classical oscillators that display such features were coupled and studied with and without external forcing. Numerical simulations show that, when the Duffing equation (the strange attractor prototype) forces the van der Pol oscillator (the limit cycle prototype), the limit cycle is destroyed. However, when the van der Pol oscillator is coupled to the Duffing equation as linear forcing, the two traditionally stable steady states are destabilized and a quasi-periodic orbit is born. In turn, this limit cycle is eventually destroyed because the coupling strength is increased and eventually gives way to strange attractor or chaotic dynamics. When two van der Pol oscillators are coupled in the absence of external periodic forcing, the system approaches a stable, nonzero steady state when the coupling strengths are both unity; trajectories approach a limit cycle if coupling strengths are equal and less than 1. Solutions grow unbounded if the coupling strengths are equal and greater than 1. Quasi-periodic solutions give way to chaos as the coupling strength increases and one oscillator is strongly coupled to the other. Finally, increasing the nonlinearity in both the oscillators is stabilizing whereas increasing the nonlinearity in a single oscillator results in subcritical instability.  相似文献   

10.
We report on self-organization of adaptive networks, where topology and dynamics evolve in accordance to a competition between homophilic and homeostatic mechanisms, and where links are associated to a vector of weights. Under an appropriate balance between the intra- and inter- layer coupling strengths, we show that a multilayer structure emerges due to the adaptive evolution, resulting in different link weights at each layer, i.e. different components of the weights’ vector. In parallel, synchronized clusters at each layer are formed, which may overlap or not, depending on the values of the coupling strengths. Only when intra- and inter- layer coupling strengths are high enough, all layers reach identical final topologies, collapsing the system into, in fact, a monolayer network. The relationships between such steady state topologies and a set of dynamical network’s properties are discussed.  相似文献   

11.
Recently, the coupling time delay has been considered as the source of the occurrence of the phase-flip bifurcation in time-delay coupled system. But the analytical results of how the coupling time delay affects this phenomenon is still lacking. In this paper, we consider a pair of identical tri-neuron network coupled with time delay. By using the symmetric bifurcation theory of delay differential equations combined with representation theory of Lie groups, we investigate the spatio-temporal patterns of Hopf bifurcating periodic oscillations induced by the coupling time delay. The explicit intervals of delay and the regions in the plane of the coupling strength and the gain of the inherent response function for the existence of synchronized in-phase or anti-phase oscillation are obtained. Our study show that the coupling time delay does not affect the spatio-temporal patterns of the individual neural loop but it has the significant impact on the spatio-temporal patterns between the two loops. These analytic results are then verified by numerical simulations.  相似文献   

12.
In this paper, we develop a theoretical framework about spatial patterns in a three-species predator–prey–mutualist system with cross-diffusion. We concentrate on three aspects of Turing pattern formation: (1) what conditions enable the occurrence of Turing patterns? (2) what are the underlying mechanisms? (3) what are the corresponding configurations? For the first two questions, by use of the stability analysis for the positive uniform solution and the Leray–Schauder degree theory, we prove that under some conditions, the system admits at least a nonhomogeneous stationary solution. For the third question, we carry out numerical simulations for a Turing pattern, and we show that the configurations of Turing pattern are stable spotted patterns, which resemble a real ecosystem.  相似文献   

13.
In order to embark on the development of numerical schemes for stiff problems, we have studied a model of relaxing heat flow. To isolate those errors unavoidably associated with discretization, a method of characteristics is developed, containing three free parameters depending on the stiffness ratio. It is shown that such “decoupled” schemes do not take into account the interaction between the wave families and hence result in incorrect wave speeds. We also demonstrate that schemes can differ by up to two orders of magnitude in their rms errors even while maintaining second-order accuracy. We show that no method of characteristics solution can be better than second-order accurate. Next, we develop “coupled” schemes which account for the interactions, and here we obtain two additional free parameters. We demonstrate how coupling of the two wave families can be introduced in simple ways and how the results are greatly enhanced by this coupling. Finally, numerical results for several decoupled and coupled schemes are presented, and we observe that dispersion relationships can be a very useful qualitative tool for analysis of numerical algorithms for dispersive waves. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
This paper aims to discuss our research into synchronized transitions in two reciprocally gap-junction coupled bursting pancreatic β-cells. Numerical results revealed that propagations of synchronous states could be induced not only by changing the coupling strength, but also by varying the slow time constant. Firstly, these asynchronous and synchronous states such as out-of-phase, almost in-phase and in-phase synchronization were specifically demonstrated by phase portraits and time evolutions. By comparing interspike intervals (ISI) bifurcation diagrams of two coupled neurons with an individual neuron, we found that coupling strength played a critical role in tonic-to-bursting transitions. In particular, with the phase difference and ISI-distance being introduced, regions of various synchronous and asynchronous states were plotted in a two-dimensional parameter space. More interestingly, it was found that the coupled neurons could always realize complete synchronization as long as the coupling strength was appropriate.  相似文献   

15.
This paper considers the synchronization dynamics in a ring of four mutually coupled biological systems described by coupled Van der Pol oscillators. The coupling parameter are non-identical between oscillators. The stability boundaries of the process are first evaluated without the influence of the local injection using the eigenvalues properties and the fourth-order Runge–Kutta algorithm. The effects of a locally injected trajectory on the stability boundaries of the synchronized states are performed using numerical simulations. In both cases, the stability boundaries and the main dynamical states are reported on the stability maps in the (K1, K2) plane.  相似文献   

16.
本文研究了具有不同耦合强度且带有时滞的振子网络上的同步问题.我们给出了该网络同步状态的稳定性准则,证实了其同步状态的稳定性与网络的拓扑性无关.最后,通过数值模拟验证了我们的理论结果.  相似文献   

17.
We study the emergence of in-phase and anti-phase synchronized rhythms in bursting networks of Hodgkin-Huxley-type neurons connected by inhibitory synapses. We show that when the state of the individual neuron composing the network is close to the transition from bursting into tonic spiking, the appearance of the network’s synchronous rhythms becomes sensitive to small changes in parameters and synaptic coupling strengths. This bursting-spiking transition is associated with codimension-one bifurcations of a saddle-node limit cycle with homoclinic orbits, first described and studied by Leonid Pavlovich Shilnikov. By this paper, we pay tribute to his pioneering results and emphasize their importance for understanding the cooperative behavior of bursting neurons. We describe the burst-duration mechanism of inphase synchronized bursting in a network with strong repulsive connections, induced by weak inhibition. Through the stability analysis, we also reveal the dual property of fast reciprocal inhibition to establish in- and anti-phase synchronized bursting.  相似文献   

18.
In this article, we present an extension of our previous approaches for steady‐state higher‐order compact (HOC) difference methods to time‐dependent problems. The formulation also provides a framework for similar treatment of other HOC spatial schemes. A stability analysis is provided for transient convection‐diffusion in 1D and transient diffusion in 2D. Supporting numerical experiments are included to illustrate stability and accuracy as well as oscillatory and dissipative behavior. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17: 657–672, 2001  相似文献   

19.
This paper addresses the combined modulatory effects of non-nearest neighbor oscillators and local injection on synchronized states dynamics with their corresponding stability boundaries in a network of self-sustained systems. The Whittaker method and Floquet theory are used to predict analytically the stability of these states for identical and non-identical coupling parameters. Charts revealing the modulation of synchronized states and their stability boundaries at the second order of interaction in the cases of identical and non-identical coupling parameters are constructed with and without an external signal locally injected in the network. Numerical simulations validate and complement the results of analytical surveys. The limits of the stability regions are numerically explored when a small amount of Gaussian white noise is also injected in the network.  相似文献   

20.
The present paper investigates the issues of impulsive synchronization seeking in general complex delayed dynamical networks with nonsymmetrical coupling. By establishing the extended Halanay differential inequality on impulsive delayed dynamical systems, some simple yet generic sufficient conditions for global exponential synchronization of the impulsive controlled delayed dynamical networks are derived analytically. Compared with some existing works, the distinctive features of these sufficient conditions indicate two aspects: on the one hand, these sufficient conditions can provide an effective impulsive control scheme to synchronize an arbitrary given delayed dynamical network to a desired synchronization state even if the original given network may be asynchronous itself. On the other hand, the controlled synchronization state can be selected as a weighted average of all the states in the network for the purpose of practical control strategy, which reveals the contributions and influences of various nodes in synchronization seeking processes of the dynamical networks. It is shown that impulses play an important role in making the delayed dynamical networks globally exponentially synchronized. Furthermore, the results are applied to a typical nearest-neighbor unidirectional time-delay coupled networks composed of chaotic FHN neuron oscillators, and numerical simulations are given to demonstrate the effectiveness of the proposed control methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号