首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
In this paper, the long-exposure far-field properties of the array of mutually-injected fiber lasers are studied to understand the effect of the multiple phase-locked states on coherent beam combining of the array. It is found that the long-exposure far-field will degenerate into the superposition of the intensities of the elementary lasers when all the phase-locked states of the array are exported with the same probability. It means that the interference pattern will be greatly weakened in the long-exposure far-field because of the export of multiple phase-locked states of the array. This result implies that the multiple phase-locked states of the array go against coherent beam combining of the array, and only some of these phase-locked states should be exported. Then, the effects of the high-order phase-locked states on the far-field are discussed. The result suggests that only the in-phase state should be exported (i.e., all the other phase-locked states should be suppressed) in order to realize high-efficiency (> 80%) coherent beam combining when the number of the elementary lasers of the array is smaller than 19.  相似文献   

2.
 利用准单色光干涉理论,计算了2×2平顶高斯超短脉冲激光在远场的干涉图样,分析了激光的时间部分相干性及其存在束间相位差时对相干合成的影响。计算结果表明,当单路激光输出光束线宽小于100 nm时,理想波前的远场光斑图样和峰值光强基本保持不变,当光束线宽大于100 nm时,干涉减弱衍射效应逐渐增强;光束间存在相位差时,时间部分相干性将破坏远场图样随束间相位差的周期性变化,相位差越大干涉越弱;当超过相干长度时,则为非相干合成,但1/6倍相干长度范围内,仍可视为较理想的相干合成,此时焦斑的斯特列尔比大于0.9,对超短脉冲的相干合成影响可忽略。  相似文献   

3.
多抖动法主振荡功率放大器相干合成技术   总被引:4,自引:2,他引:2       下载免费PDF全文
 采用多抖动相位控制方法实现了两路和三路1 W量级光纤放大器的相干合成,对实验结果进行了详细分析。实验中,将种子光源输出激光分为两路(或三路),分别通过光纤放大器进行功率放大,并采用多抖动法实现相干合成。控制系统开环时,远场光斑条纹模糊不清,两路和三路合成时条纹对比度分别为0.19和0.12;系统闭环时,远场光斑条纹清晰可见,对比度提高到0.93和0.81,合成效率分别为80%和77%。此外,对两路和三路的合成效果进行了比较,指出了各路的控制资源对合成效果的影响。  相似文献   

4.
We perform two-photon coincidence subwavelength interference experiments from double slit using independent photons obtained from a pseudo-thermal light source produced by (i) slowly rotating ground glass (RGG) with turbid solution of a different density and (ii) RGG. The turbid solution is water solution containing 3 μm diameter polystyrene microspheres. It is found that the visibility of the obtained interference pattern decreases in first experiment with increasing the density of the turbid solution from N = 1010 spheres m−3 to N = 1014 spheres m−3. However, the results are reported here for the density of N = 1014 spheres m−3. The visibility obtained with RGG with turbid solution having N = 1014 spheres m−3is 23% which increases to 27% with RGG but the resolution decreases. The effect of coherence width of source in two-photon interference pattern is also studied with pseudo-thermal light obtained by RGG. It was observed that on increasing the coherence width the visibility of interference fringes increased and quality of the fringe reduced and when the coherence width was more then slit separation, in coincidence measurements, no interference pattern appeared. The results are used to explore the classical subwavelength interference nature with thermal light.  相似文献   

5.
We demonstrate coherent beam combination of 137 W fiber amplifier array using single frequency dithering technique. Four polarization-maintained fiber amplifiers are tiled into 2×2 array and the output power of each amplifier is about 35 W. Single frequency dithering algorithm is run on a signal processor based on field programmable gate array (FPGA) for phase control on the fiber amplifiers. When the phase control system goes into closed-loop, the fringe contrast of far-field intensity pattern is improved by more than 87% from 0 in open-loop, and the residual phase error is less than λ/20.  相似文献   

6.
A liquid-cooled ceramic Nd:YAG split-disk laser amplifier has been designed for a high-average-power laser system. The maximum average output power of 17.1 W (1.71 J at 10 Hz) and the beam size of far-field pattern with 1.5 times diffraction limit was obtained. The combination of liquid cooling for disk laser material and wavefront compensation with a phase conjugation mirror was demonstrated. The wavefront degradation by liquid cooling was observed and measured with Michelson interferometer and far-field patterns.  相似文献   

7.
A novel coherent beam combination system based on double piezoelectric ceramics transducer (PZT) phase modulators is presented and demonstrated for the first time. In this system, two different PZT phase modulators are used for high frequency phase modulation and low frequency phase control, respectively, while in previous demonstrated system, LiNbO3 phase modulators are often employed. The inherent low insert loss and high laser-induced damage threshold of the PZT phase modulator makes the new proposed system more compact and stable. By the way, the experiment of coherent beam combination of two 5-W fiber laser beams based on double PZT phase modulators is done. In the experiment, the PZT phase modulator with 500-kHz frequency response point made in home is used for high frequency phase modulating and another one with 0~30-kHz linear frequency response range for phase controlling. When the phase control system is in the closed loop, the fringe contrast of far-field intensity pattern is improved to be more than 90 % from 5 % in open loop.  相似文献   

8.
A method to obtain three-dimensional sub-micrometric periodic structures is presented. The experimental set-up consists in a pulsed UV laser beam source (λ = 355 nm) coming into an interferometer in order to generate four beams converging inside a chamber. According to the directions, to the relative intensities and to the polarizations of these four beams, a 3D interference pattern can be obtained inside the overlapping volume of these four beams; the characteristics of the four laser beams have been optimized in order to obtain a maximal contrast of intensity. In order to visualize the interference pattern, its contrast and its stability at each laser pulse, a video camera coupled to an oil immersion microscope objective has been installed above the interferometer. By suppressing the central beam, it is also possible to generate a bidimensional interference pattern which defines an hexagonal structure in the (1 1 1) plane with a period of 377 nm.This optical set-up has been used to obtain 3D sub-micrometric periodic structures in negative photoresists. Experiments consist in a one- or multi-pulse irradiation of the photoresist followed by a development procedure which leads to a sub-micrometric face-centred cubic structure cut in a (1 1 1) plane with a cell parameter of 650 nm. The optimization of the experimental conditions is presented for two kinds of photoresists; the role of the substrate according to its reflectivity at the laser wavelength and its influence on the interference pattern is also discussed.  相似文献   

9.
Coherent beam combining (CBC) of a polarization-maintaining fiber amplifier and a non-polarization-maintaining fiber amplifier is presented. The experiment is based on adaptive polarization control and active phase control. The stochastic parallel gradient decent (SPGD) algorithm is used for the adaptive polarization control in the non-polarization-maintaining fiber amplifier and the active phase control is realized by single frequency dithering (SFD) algorithm. When the adaptive polarization control system and the phase control system go into closed loop, the fringe contrast of far-field intensity pattern is improved to more than 87.7%. A scalable architecture for CBC of two styles fiber amplifiers is also proposed.  相似文献   

10.
In this work the resonance, frequency response, and far-field patterns of an optical nano-antenna placed on an interface between air and a metamaterial substrate is obtained through finite element calculations. The metamaterial is characterized by an effective, macroscopic index of refraction which can take negative and near-zero values, or by published values of the effective permittivity and permeability for metamaterials. The results show that the resonant wavelength and response can be fitted to analytical functions that are even functions of the index of refraction, this is consistent with the knowledge that negative indices of refraction allows for wave propagation in the same magnitude but opposite direction observed with positive indices of refraction. The simulations also show that substrates with near-zero index of refraction will enhance the antenna response by 62% compared to substrates with n > 1. Lossy metamaterials are also considered in the simulations. The far-field pattern of the antenna, obtained through a near-field to far-field transformation, behaves the same independently of the sign of the index of refraction, also the far-field pattern for the emission towards near-zero substrates is nearly constant and independent of the angle for the evaluated angular range.  相似文献   

11.
The development of array technique is a crucial issue for large-scale laser system, and the most important factor effecting optical performance of array system is exacting alignment tolerances, which are always requited to be less than 0.25 μrad and λ/13. An integrated model setup for far-field pattern distribution of a 2 × 2 array-optical system is described, which simulates the combining results under the influence of external vibration in PID control mode. In this model, the ANSYS and MATLAB/SIMULINK are included to respectively perform structure and control analysis. Based on the integrated model analysis, a 2 × 2 array-optical prototype is designed and fabricated, the simulation and experimental results show that the array-mirror assembly is capable of maintaining high-accuracy tiling stability.  相似文献   

12.
提出了一种分析气泡远场干涉的理论模型。平行激光束照射到透明介质中的气泡上,折射光束与全反射光束在远场发生干涉形成内密外疏圆环状干涉条纹,推求了两平行出射光线的光程差公式和两光线之间的距离公式,分析了圆环状干涉条纹内密外疏的原因,给出了计算干涉条纹存在区域和最高干涉级的方法。通过干涉方法可以测量气泡的直径,能够用于介质深处气泡尺寸的测量。利用远场干涉对玻璃水箱、平板玻璃、玻璃棱镜中的气泡直径进行了测量,其中玻璃棱镜中气泡直径测量结果与用阿贝比长仪测量结果对比,相对差为0.9%。预期了气泡远场干涉在运动气泡尺寸、泡内气体折射率、透明光疏介质中光密介质球尺寸测量等方面的应用。  相似文献   

13.
The optical multistability behaviour in a ring cavity for the V-type atomic system, driven by a coherent field and control field (coherent + dc fields), has been analysed. The presence of dc field is having a dominant effect on generating the optical multistability of the system. We show that, the effects of the quantum interference from spontaneous emission and of the relative phase between the two fields of the control field might be of use to control the threshold value and width of the hysteresis cycle, which can adjust the optical switching process when they are taken at optimal values. Also, the optical multistability is predicted for the output field as a function of the cooperative parameter in the presence of the quantum interference of the spontaneous emission.  相似文献   

14.
An optical fiber curvature sensor based on interference between LP01–LP02 modes of a circularly symmetric few mode fiber (FMF) is presented. The device consists of two single-mode fiber and a 10-cm FMF. The two single-mode fiber is offset-spliced to each end of the FMF. When the optical fiber is kept straight and fixed, the interference pattern appears in the transmitted spectrum. As the fiber device is bent, the visibility of the interference fringes (at 1530 nm) decreases, reaching values close to 0.3. The dynamic range of the device can be tailored by the proper selection of the length of FMF. The relationship between the fringe visibility and the curvature is linear while the curvature is between 11 m−1 and 16 m−1. The result indicates that the compact sensor can be used in the measurement of large curvature, which is also important in structural health monitoring.  相似文献   

15.
Plasma actuators were used in this work to control flow-induced broadband noise radiated from a bluff body. The model consists of a cylinder and a component (torque link) that is installed on the lee side of the cylinder. The objective is to reduce the broadband noise mainly generated through the impingement of the cylinder wake on the torque link. The flow-structure interactions between the cylinder wake and the torque link are reduced by manipulating the cylinder wake with the externally imposed body force from the plasma actuators, which lead to the attenuation of the broadband noise. The control performance with the plasma actuators is studied in an anechoic chamber facility by examining far-field sound level and near-field acoustic source changes. At a free stream speed of 30 m/s, corresponding to the Reynolds number of 2.1×105, far-field measurements suggested that a reduction of up to 3.2 dB in overall sound pressure level. The near-field beamforming results also show approximately 3 dB reduction in the interested frequency ranges. The physical mechanisms related to broadband noise control were also discussed. This work suggests that plasma actuators offer the potential for solving flow-induced noise control problem at broadband frequencies.  相似文献   

16.
A simple sensing method for simultaneous measurement of temperature and strain is investigated by using a Sagnac fiber loop mirror composed of a polarization-maintaining photonic crystal fiber (PM-PCF) incorporating an erbium-doped fiber (EDF). Amplified spontaneous emission created by a pumped EDF is transmitted to a Sagnac fiber loop mirror. The interference between two counter-propagating signals in a Sagnac fiber loop mirror generates a periodic transmission spectrum with respect to wavelength. When external temperature is increased, the transmission peak power reduces because the amplified spontaneous emission of the EDF is decreased by the applied temperature change (0.04 dB/°C). The peak wavelength is shifted into the shorter wavelength because of the negative temperature dependence of the birefringence of the PM-PCF (0.3 pm/°C). As the applied strain increases, the peak wavelength of the transmission spectrum of the Sagnac loop mirror incorporating the EDF shifts into a longer wavelength (1.3 pm/με) because the phase change of the proposed sensing probe is directly proportional to the applied strain. The transmission peak power, however, is not changed by the applied strain. Since the source and the sensing probe are integrated, the overall system configuration is significantly simplified without requiring any additional broadband light source. Therefore, it is possible to simultaneously measure temperature and strain by monitoring the variation of transmission peak power and peak wavelength, respectively.  相似文献   

17.
Based on the theory of speckle and self-mixing interference in laser-diode, three-facet cavity model is introduced to analyze laser Doppler effect based on self-mixing interference in the case of a rough surface, and numerical solution of the signal is obtained. Simulation results of speckle-modulated Doppler signal based on self-mixing effect and tracking accuracy at different incident angles are given using parameters employed in the experiment. Simulation results indicate incident angle of around 30° is most suitable when both tracking accuracy and signal amplitude are considered. Experimental waveforms agree well with simulation results, and similar conclusions as simulation predictions about changing trend of tracking accuracies of the system at different incident angles can be made. Combining with difference frequency analog phase-lock loop (PLL) technique and appropriate sampling time, a laser Doppler velocimeter with tracking accuracy better than 1.3% in the range of 10-470 mm/s is realized.  相似文献   

18.
Coherent beam combination of two thulium-doped fiber laser beams using a multi-dithering technique is presented for the first time. In the experiment, two fiber lasers centered at 1948.6 nm are coherently combined, and a phase modulator based on piezoelectric ceramics transducer is connected in one beam path to compensate for the phase errors between the two beams. When the phase control system is closed loop, the fringe contrast of the far-field intensity pattern is improved to be more than 75%, from 15% in open-loop, and the residual phase error is less than λ/20. The experimental results show that the performance of the phase control system is robust and the control bandwidth is more than 1 kHz, which indicates that the above approach can be scaled to facilitate the coherent beam combination of kilo-watt level thulium-doped fiberlaser.  相似文献   

19.
Hyper-NA ArF (193 nm) immersion lithography is one of the most potential technologies to achieve 32 nm critical dimension node. At the corresponding large angles in the photoresist, control of polarization becomes necessary. A polarization beam splitter (PBS) based on a subwavelength dielectric grating has been designed for use with 193 nm light. The polarization-selective property of such grating is explained by the mechanism of mode interference. The designed grating working as a 1 × 2 beam splitter can transmit TM wave (∼ 90%) to the zeroth order with extinction ratio of 753, and it diffracts TE wave (∼ 80%) to the −1st order with extinction ratio of 300.  相似文献   

20.
In this paper we propose a framework to enhance light extraction efficiency in white organic light emitting diodes (WOLED) using photonic crystal (PhC) structures sandwiched between indium tin oxide (ITO, nITO = 1.8+0.01i) and glass (nglass = 1.51) substrate, according to the high refractive index contrast of these two layers almost 50% of the generated light inside WOLED gets trapped in the mentioned interface. The main purpose of this article is to suggest a method to intentionally optimize PhC structures to reduce total internal reflections (TIR) happening at ITO/glass interface. Here three different patterns are considered including rectangular, hexagonal and circular lattices. Using Finite Difference Time Domain (FDTD) method and the presented framework for choosing structural parameters the portion of 50% trapped light in ITO was reduced to 20% which is a large enhancement in extraction efficiency of WOLED. Also far-field results before and after adding PhCs are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号