首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Inverted return-to-zero (IRZ)-Manchester coding is proposed for optical downstream signal using amplitude shift keying (ASK) modulation in an optical network unit (ONU)-source-free wavelength-division-multiplexing passive optical network (WDM-PON), and ASK modulation is used for the optical upstream signal generation using remodulation over the optical downstream signal. With IRZ-Manchester coding, differential phase shift keying (DPSK) modulation can be overlaid on the downstream optical ASK signal for broadcasting services. Our experimental results show that the IRZ-Manchester coded optical ASK downstream signal has no modulation extinction ratio restrictions from the overlaid DPSK modulation, and that the remodulated optical upstream signal has very limited signal crosstalk from the downstream signals. In comparison with the conventional schemes using only Manchester coding or IRZ modulation, the proposed IRZ-Manchester coded modulation scheme shows better performance under different PON upstream and downstream traffic bit rate ratios.  相似文献   

2.
The AWG-filtering effect was investigated on a bidirectional 100-GHz-channel-spacing WDM-PON link using spectrum-sliced and RSOA-amplified light sources for downstream signals and a wavelength reuse technique for upstream signals. Three different AWGs including Gaussian, trapezoidal, and rectangular filtering types were applied and their signal performance was compared for link transmission. The performance influence to both directional signals was analyzed and optimized according to an extinction ratio of a downstream signal. It was found that there was an optimal pass bandwidth of AWG for achieving balance between relative intensity noise decrement and cross phase modulation noise increment as the bandwidth got wider.  相似文献   

3.
We proposed and simulatedly demonstrated a novel full-duplex radio-over-fiber system using an external modulator and an optical interleaver to generate dual quadrupling-frequency optical millimeter waves for carrying two base station downstream data and wavelength reuse for uplink connection. The simulation results reveal that the power penalties for the downstream and upstream signals of both base stations are less than 0.8 dB. In this new scheme, the configuration of the both base stations is simplified further because there is no additional laser at two base stations. The frequency of local oscillator signal is reduced due to frequency quadrupling. The cost of the new system is largely reduced.  相似文献   

4.
We proposed and demonstrated a bidirectional SCM-WDM PON using a reflective filter and cyclic AWG where up/downlink data could be provided using a single optical source. In the proposed scheme, the signal for downstream was modulated by a single CW laser diode and remodulated in the optical network unit as an upstream, the proposed WDM-PON scheme can offer the SCM signal for broadcasting service. In this paper, 1 Gb/s signals both for up- and downstream were demonstrated in 10 km bidirectional optical fiber link.  相似文献   

5.
In a remodulation PON, the upstream signal quality can be improved when the downstream signal is coded. But low code efficiency may result in network congestion in downlink. Based on the downlink traffic, a self-adapting PON can select the proper downstream modulation codes to achieve the optimal network performance. With adaptive code selection, network congestion can be avoided and the remodulated upstream signal suffers minimal performance degradation. Some codes of various coding efficiency are required to be selected in this self-adapting PON. These codes should induce as little crosstalk to the upstream signal as possible. Several candidate codes with coding efficiencies from 50% to 80%, such as Manchester code, 3b5b code, 4b5b code, 4b6b code and 6b8b code are tested through simulation and experiment in this paper, and their performances are compared. The results show that the optimum code for downstream modulation depends on the downlink traffic and the upstream bit rate. The results will help the self-adapting remodulation WDM-PON to select the proper downstream modulation codes in different traffic situations.  相似文献   

6.
Here we have demonstrated a novel architecture of colorless wavelength division multiplexed-passive optical network (WDM-PON) and analyze its performance which is capable of transmitting 10 Gbps data symmetrically in both downstream and upstream. In this architecture downstream data is subcarrier modulated (SCM) using radio frequency (RF) as subcarrier and laser frequency as carrier with the help of a Mach–Zehnder modulator (MZM). For upstream data modulation an electro-absorption modulator, an optical coupler and reflective semiconductor optical amplifier (RSOA) are used. Upstream data is transmitted through wavelength conversion between pump wavelength and continuous wave light sent from central office (CO) using cross gain modulation (XGM) in RSOA. Pump wavelengths have separate wavelength band than the carrier's wavelength sent from optical network unit (ONU) and can be chosen any one in its band. Since carrier reuse scheme is implemented so all the ONUs are operates in colorless mode. Effect of ER of delay interferometer (DI) on output OCSR of DI for different input OCSR is performed for SCM data. Simulation is performed with all 16 downlink and 16 uplink channels having data rate of 10 Gbps having acceptable performance.  相似文献   

7.
This paper proposes and numerically investigates a novel high-speed wavelength-division-multiplexed passive optical network (WDM-PON) architecture with colorless user terminals based on the use of orthogonal modulation scheme for downstream and upstream transmission. The 40 Gb/s optical frequency shift keyed (FSK) downstream data is generated based on carrier-suppressed modulation. At optical network unit, the downstream signal is directly re-modulated by the 2.5 Gb/s up-stream data and sent back with the same fiber. Error free transmission over 20 km single mode fiber can be observed for both downstream and upstream signals in our simulation. Power budget, tolerance of channel spacing, FSK tone spacing and dispersion are all investigated. Factors that might influence the stability of the system are analyzed and an extended hybrid wired/wireless version of the scheme is also given.  相似文献   

8.
We propose a novel wavelength-division multiplexed passive optical network (WDM-PON) to simultaneously transmit unicast data and multicast services with upstream data re-modulation in optical network units (ONUs). For each wavelength channel in the optical line terminal (OLT), the downstream unicast data are applied to one arm of a dual-parallel Mach-Zehnder modulator (DPMZM) to generate baseband unicast non-return-to-zero (NRZ) signal. A radio frequency (RF) control signal is applied to the other arm to present two un-modulated sidebands for multicast data modulation in a differential phase-shift keying (DPSK) format. The flexible and dynamic multicast services are realized by simply switching the RF control signal on or off. The proposed scheme is experimentally demonstrated with 1.25-Gb/s downstream unicast, multicast, and upstream data.  相似文献   

9.
In this paper, we propose a new structure of a centralized-light-source wavelength division multiplexed passive optical network (WDM-PON) utilizing inverse-duobinary-return-to-zero (inverse-duobinary-RZ) downstream and DPSK upstream. It reuses downstream light for the upstream modulation, which retrenches lasers assembled at each optical network unit (ONU), and ultimately cuts down the cost of ONUs a great deal. Meanwhile, a 50-km-reach WDM-PON experiment with 10-Gb/s inverse-duobinary-RZ downstream and 6-Gb/s DPSK upstream is demonstrated here. It is revealed to be a novel cost-effective alternative for the next generation access network.  相似文献   

10.
The wavelength division multiplexing-time division multiplexing (WDM-TDM) passive optical network (PON) using reflective semiconductor optical amplifier (RSOA)-based colorless optical networking units (ONUs) is considered as a promising candidate for the realization of fiber-to-the-home (FTTH). And this architecture is actively considered by Industrial Technology Research Institute (ITRI) for the realization of FTTH in Taiwan. However, different fiber distances and optical components would introduce different power budgets to different ONUs in the PON. Besides, due to the aging of optical transmitter (Tx), the power decay of the distributed optical carrier from the central office (CO) could also reduce the injection power into each ONU. The situation will be more severe in the long-reach (LR) PON, which is considered as an option for the future access. In this work, we investigate a WDM-TDM PON using RSOA-based ONU for upstream data rate adjustment depending on different continuous wave (CW) injection powers. Both standard-reach (25 km) and LR (100 km) transmissions are evaluated. Moreover, a detail analysis of the upstream signal bit-error rate (BER) performances at different injection powers, upstream data rates, PON split-ratios under stand-reach and long-reach is presented.  相似文献   

11.
It is believed that the integration of wired and wireless access networks (or heterogeneous network) will provide high bandwidth and flexibility for both fixed and mobile users in a single and cost-effective platform. Here, we propose and demonstrate a signal remodulated wired and wireless network with wireless signal broadcast. Dark-return-to-zero (DRZ) and polarization-shift-keying (PolSK) signals are used for the downstream wired and wireless applications respectively. At the remote antenna unit (RAU), the PolSK signal is demodulated to produce the binary-phase-shift-keying (BPSK) signal, which will be used for the wireless broadcast application. Signal remodulation is demonstrated using reflective semiconductor optical amplifier (RSOA) as a colorless reflective modulator in the optical networking unit (ONU)/RAU. The downstream signal is remodulated at the ONU/RAU to produce the non-return-to-zero (NRZ) upstream signal.  相似文献   

12.
We present a novel method for providing broadcast signal transmission in a wavelength division multiplexing passive optical network (WDM-PON).An unmodulated optical carrier for downstream transmission and a pair of unmodulated single-side band subcarriers are utilized for broadcast delivery and upstream transmission,respectively.System performance at 2.5-Gb/s down/upstream and 2.5-Gb/s broadcast transmission is also investigated.  相似文献   

13.
In this paper, the cost effective bi-directional passive optical network architecture with wavelength remodulated scheme is investigated. To realize the cost-effective PON, remodulation scheme is used, in which the downstream optical signal is reused as a carrier for the upstream transmission as it eliminates the need for an extra laser source at optical network units. The performance of proposed passive optical network is analyzed and compared for various modulation formats such as Non Return to Zero (NRZ), Return to Zero (RZ) and On–Off Keying (OOK) with 64 optical networks units (ONUs) at different traffic speed for downlink and uplink, respectively. It has been observed that the most suitable data format for proposed PON network is NRZ. Further the proposed system performance is compared with the current state-of-the-art PON architectures.  相似文献   

14.
This paper proposes a new cross-protection colorless dual-WDM-PON architecture. The proposed protection scheme can provide 1 + 1 downstream protection and 1:1 upstream protection against both feeder fiber and distribution fiber failures by using the fiber links and AWGs of the neighboring WDM-PON. Wavelength is reused for the down- and up-stream transmissions in dual-WDM-PONs where gain-saturated reflective semi-conductor optical amplifiers (RSOAs) are employed as colorless transmitters in ONUs. The number of extra protection fibers is minimized and wavelength is much more efficiently utilized compared with other protection schemes. The feasibility and operation of the proposed dual-WDM-PON architecture are experimentally verified with 1.25 Gb/s for upstream and 2.5 Gb/s for downstream over 20 km single mode fiber transmission in both working and protection modes.  相似文献   

15.
We investigate the principles of optical phase remodulation and demonstrate its application in a future-proof10 Gb/s/channel wavelength-division-multiplexed(WDM) passive optical network to realize a colorless optical network unit and bidirectional transmission over a single fiber. The modulation depth of downstream differential phase-shift keying is properly reduced to facilitate phase remodulation and Rayleigh noise mitigation. For both downstream and upstream 10 Gb/s signals, error-free transmission via a 20 km single-mode fiber is demonstrated without dispersion compensation operation.  相似文献   

16.
A full-duplex radio-over-fiber (RoF) link with a novel scheme to generate 60 GHz mm-waves from a 5 GHz RF signal source is investigated. In the RoF downlink, the required frequency of the RF oscillator is reduced greatly. Since the optical carrier is not modulated by downstream data, part of it is reused to carry upstream data and the upstream data is transmitted to the central station using optical single-sideband modulation. In this way, a single wavelength is used for both downstream and upstream transmissions. Based on this scheme, a full-duplex RoF link is built and its transmission performance is analyzed. Theoretical analysis and numerical simulation show that the downstream signal cannot only eliminate code form distortion caused by time shift of the code edges, but also reduce the influence of the fading effect as the 60 GHz DSB optical mm-wave signal is transmitted along the fiber, and the upstream signal is immune to both fading effect and time shift of the code edges.  相似文献   

17.
We have demonstrated a bidirectional reflective semiconductor optical amplifier (RSOA) based on wavelength division multiplexing ROF network utilizing an offset quadrature differential phase shift keying (OQPSK) signal for down-link and an on-off keying (OOK) signal re-modulated for up-link. A 50 km range colorless WDM-ROF without dispersion compensation was demonstrated for both 1 Gbit/s downstream and upstream signals. The BER performance of our scheme shows that our scheme is a practical solution to meet the data rate and cost-efficient of the optical links simultaneously in tomorrow's ROF access networks.  相似文献   

18.
Pulse position modulation(PPM) is introduced downstream of the reflective semiconductor optical amplifier (RSOA)-based single-fiber full-duplex bidirectional wavelength division multiplex passive optical network(WDM PON) to suppress the interference brought by the remodulation effect in the RSOA, Rayleigh backscattering,and reflection of the connection devices.In addition,because of the powerefficient characteristic of the PPM-encoded signals,the power budget shows clear improvement.As the experimental tests indicate,with~6 dB extinction ratio(ER) in the downstream signal,the receiving sensitivity of the PPM-encoded channel is~2.6 and~3 dB higher than that of the NRZ(Non-return to zero)-encoded channel in the downlink and uplink,respectively.  相似文献   

19.
A new WDM-PON scheme with real-time monitoring based on a time-sharing method is proposed. It uses an optical time domain reflectometer (OTDR) to monitor multiple ports by integrating an optical switch (OSW) with a dense wavelength division multiplexer (DWDM) at the optical line terminal (OLT) site. Each downstream signal and its corresponding monitoring signal are separated by m times the free-space range (FSR) of an array waveguide grating (AWG). A bit error rate (BER) test in 2.5 Gb/s × 27 km is performed with and without turning on the OTDR. A small power penalty of 0.7 dB is observed compared to the back-to-back measurement.  相似文献   

20.
Yanan Cao  Chaoqin Gan 《Optik》2012,123(2):176-180
A novel architecture of hybrid WDM/OCDMA-PON employing two wavelength bands for two different groups of ONUs is proposed. OCDMA is overlayed on WDM channel in a single network and the total capacity of WDM/OCDMA-PON becomes 2m times larger than the traditional WDM-PON. Meanwhile, a C + L band ultra-broadband light source is used for upstream transmission, which can be seen as a cost-effective manner in FTTH. In simulation system, 1.25 Gb/s downstream and upstream data based on the architecture are transmitted with good performance. And the crosstalk penalties from adjacent code channels (at the same wavelength) are found to be little in upstream and downstream transmissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号