首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnetic properties, arising from surface exchange and interparticle interactions of the Fe3O4 (magnetite) nanoparticles, were investigated in the temperature range of 5–300 and 120–300 K using vibrating sample magnetometer technique and electron spin resonance spectroscopy, respectively. The research was based on to figure out the origin of intraparticle interactions and the change of interparticle interactions in wide size range Fe3O4 nanoparticles. The analyses were done for samples having almost same particle size distributions. The average particle sizes were changed in between 30 ± 2 and 34 ± 2 nm. The observed magnetization values were demonstrated the mixture of single-domain size particles, exhibiting both single-domain (SD) and superparamagnetic (SPM) states. The symmetry of resonance curves changed according to the ratio of SD and SPM-stated particles in mixture under located temperature. The changes of anisotropy up to domain state were understood by freezing magnetic moment in glycerol matrix from room temperature to 120 K under 5-kG field. The shift of H R values to higher magnetic fields and the more symmetric resonance spectrum proved the effect of anisotropy and interparticle interactions fields on magnetic behave. In addition, the origin of intra-interaction was exposed from Fe3+ centers and exchange coupling in between Fe2+, Fe3+, and O, and Fe3+ centers found from g factor (g).  相似文献   

2.
The effect of excess surfactants (oleic acids) in a colloidal solution on the adsorption behavior of 9.5-nm-sized, sterically stabilized iron oxide (γ-Fe2O3) nanoparticles on hydrogen terminated Si (Si:H) substrates during a dip-coating process is examined. While the particle coverage follows a type of Langmuir adsorption isotherm as initially increasing and subsequently saturating with increasing particle concentration, it also critically depends on the excess surfactant concentration in the solution. For instance, it is noted that by adding the oleic acids from 0.06 to 2.80 × 1018 ml−1 in the solution with 4.65 × 1013 ml−1 particle concentration, the coverage is gradually reduced from 0.42 to 0.25. In addition, increasing surfactant concentration distinctly changes the morphology of a self-assembled particle layer from densely distributed smaller clusters to sparsely connected, larger ones with enlarged space. The reduced coverage and enlarged cluster size with increasing oleic acid concentration are explained by the reduced interaction energy between particle and substrate and the increased capillary force between particles.  相似文献   

3.
ZnFe2O4 bulk material shows a normal-spinel structure and a closely defined composition at Zn2+/Fe3+ ≅ 0.5. However, the composition of zinc ferrite, prepared as nanoparticles, can be varied in a broad range without losing the single-phase spinel structure. In this article, structural mechanisms enabling this non-stoichiometry were studied using the X-ray absorption fine structure (EXAFS) in combination with X-ray diffractometry (XRD), transmission electron microscopy (TEM), and magnetic measurements. Nanoparticles with a narrow size distribution were synthesized using co-precipitation in water-in-oil microemulsions. First, the structure of the stoichiometric zinc-ferrite nanoparticles was studied in dependence of their size and the annealing temperature. EXAFS analysis showed that the degree of inversion x (as defined in the compound formula (Zn1 − x Fe x )[Fe2 − x Zn x ]O4, with round and square brackets representing the tetrahedral and octahedral sites, respectively) increased with decreasing nanoparticles size. The structure of the stoichiometric nanoparticles and the nanoparticles of comparable size displaying Zn/Fe ratio of 0.2 (Fe-rich) and 0.7 (Zn-rich) were then compared. Analysis showed that the non-stoichiometry is structurally compensated predominantly in the core of the nanoparticle by the adjusted distribution of Zn and Fe ions over the two sublattices of the spinel structure.  相似文献   

4.
The absorption (α) and Faraday rotation (θ) spectra of 14 garnets belonging to the series Bi x Sm3-x Fe5-y Ga y O12 (0<x<1.05, 0.8<y<1.15) have been measured between 15 000 cm−1 and 19 000 cm−1. The figure of merit (θ/α) at 17 850 cm−1 (560 nm) increases linearly with increasing bismuth concentration up tox∼0.6 where it begins to increase less rapidly. For operation of magneto-optic display devices at 17 850 cm−1 there is no advantage in using garnets in this series withx>0.8. The Faraday rotation at 17 850 cm−1 increases linearly with bismuth concentration whereas the absorption coefficient increases more rapidly. The presence of Bi3+ increases the intensity of all Fe3+ pair transitions in the garnet system as a result of the increased superexchange induced by Bi3+. This is in keeping with the observation that the intensity of the6A1g (S)→4T1g (G) transition in (RE)3Fe5O12 (RE=Er, Y, Dy, Gd, Eu) increases on traversing the above RE series as do the Curie temperatures of these iron garnets.  相似文献   

5.
Ceramics powder of BaCe0.95Yb0.05O2.975 was successfully prepared by sol–gel method. Thermogravimetric analysis showed that the decomposition of the dried powder was completed at 1,000 °C. Three strongly exothermic peaks observed in differential thermogravimetric signal indicated three major stages of weight loss in the sample. The high crystallinity of sample with orthorhombic structure was confirmed by X-ray diffraction. The loose particles size obtained from scanning electron microscope was in the range of 65–100 nm, which is almost in the same range as that observed in particle size distribution. The sample showed a dc conductivity of ~1.3 × 10−4 S cm−1 at 650 °C and the activation energy, E a, was found to be 1.4 eV. Result of chemical stability test showed that the compound was unstable in atmosphere containing pure carbon dioxide.  相似文献   

6.
The internal morphology and magnetic properties of layer-by-layer assembled nanofilms of polyaniline (PANI) and maghemite (γ-Fe2O3—7.5-nm diameter) were probed with cross-sectional transmission electron microscopy (TEM) and magnetization measurements (magnetic hysteresis loops, magnetization using zero-field cooled/field-cooled protocols, and ac magnetic susceptibility). Additionally, simulations of the as-produced samples were performed to assess both the nanofilm’s morphology and the corresponding magnetic signatures using the cell dynamic system (CDS) approach and Monte Carlo (MC) through the standard Metropolis algorithm, respectively. Fine control of the film thickness and average maghemite particle–particle within this magnetic structure was accomplished by varying the number of bilayers (PANI/γ-Fe2O3) deposited onto silicon substrates or through changing the concentration of the maghemite particles suspended within the colloidal dispersion sample used for film fabrication. PANI/γ-Fe2O3 nanofilms comprising 5, 10, 25 and 50 deposited bilayers displayed, respectively, blocking temperatures (T B) of 30, 35, 39 and 40 K and effective energy barriers (ΔE/k B) of 1.0 × 103, 2.3 × 103, 2.8 × 103 and 2.9 × 103 K. Simulation of magnetic nanofilms using the CDS model provided the internal morphology to carry on MC simulation of the magnetic properties of the system taking into account the particle–particle dipolar interaction. The simulated (using CDS) surface–surface particle distance of 0.5, 2.5 and 4.5 nm was obtained for nanofilms with thicknesses of 36.0, 33.9 and 27.1 nm, respectively. The simulated (using MC) T B values were 33.0, 30.2 and 29.5 K for nanofilms with thicknesses of 36.0, 33.9 and 27.1 nm, respectively. We found the experimental (TEM and magnetic measurements) and the simulated data (CDS and MC) in very good agreement, falling within the same range and displaying the same systematic trend. Our findings open up new perspectives for fabrication of magnetic nanofilms with pre-established (simulated) morphology and magnetic properties.  相似文献   

7.
Nano-sized Al3+-doped V2O5 cathode materials, Al0.2V2O5.3−δ , were prepared by an oxalic acid assisted sol–gel method at 350 °C (sample A) and 400 °C (sample B). X-ray diffraction confirmed that samples A and B were pure phase Al0.2V2O5.3−δ with an orthorhombic structure close to that of V2O5. Scanning electron microscopy showed that sample A was in nanoscale with a mean particle size about 50 nm. Cyclic voltammetry showed the good electrochemical and structural reversibility of the Al0.2V2O5.3−δ nanoparticles during the Li+ insertion/extraction process. The Al0.2V2O5.3−δ nanoparticles exhibited excellent charge–discharge cycling performance and rate capability compared to that of bulky V2O5 electrodes. For instance, the materials delivered a reversible specific capacity about 180 mAh g−1 (sample A) and 150 mAh g−1 (sample B), in the potential window of 4.0–2.0 V at the current density of 150 mA g−1. The Al0.2V2O5.3−δ nanoparticles in particular showed almost no capacity fading for at least 50 cycles.  相似文献   

8.
A new anthracene-based fluorescent PET sensor 1 with a tridentate ionophore of amide/β-amino alcohol displays very good selectivity and sensitivity for Fe3+ (K a = 1.6 × 103 M−1) and Hg2+ (K a = 2.1 × 103 M−1) in CH3CN–H2O (3:7, v/v) with detection limit of 1 μM. More fluorescence enhancement was observed when 1 selectively detected Fe3+ or Hg2+ in CH3CN and its detection limit was up to 0.03 μM.  相似文献   

9.
The electrical ionic conductivity of unirradiated and irradiated CaF2: Nd crystals in the range of 60 to 800°C has been measured. The conductivity plot is basically divided into four parts, i.e., intrinsic and extrinsic unassociated, extrinsic associated, and extrinsic segregated regions. Activation energy (for unirradiated samples) in the extrinsic unassociated region is in the range of 0.69 to 1.20 eV depending on the doping concentration while for the intrinsic region, it is of the order of 1.89 eV. The conductivity in the extrinsic unassociated region increases with increase of Nd content in the sample. Also, the conductivity in the extrinsic region forγ-irradiated sample is higher than that for unirradiated one. In the intrinsic region, however, the conductivity is independent of dopant concentration orγ-irradiation. From these results it is surmised thatF interstitials are the charge carriers in this region for CaF2: Nd3+ system.  相似文献   

10.
Sr1−x La x Zn x Fe12−x O19/poly(vinylpyrrolidone) (PVP) (0.0≤x≤0.5) precursor nanofibers were prepared by the sol–gel assisted electrospinning method from starting reagents of metal salts and PVP. Subsequently, the Sr1−x La x Zn x Fe12−x O19 nanofibers with diameters of around 100 nm were obtained by calcination of the precursor at 800 to 1000°C for 2 h. The precursor and resultant Sr1−x La x Zn x Fe12−x O19 nanofibers were characterized by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectrometer and vibrating sample magnetometer. The grain sizes of Sr0.8La0.2Zn0.2Fe11.8O19 nanofibers are in a nanoscale from 40 to 48 nm corresponding to the calcination temperature from 800 to 1000°C. With La–Zn substitution content increase from 0 to 0.5, the grain size and lattice constants for the Sr1−x La x Zn x Fe12−x O19 nanofibers obtained at 900°C show a steady reduction trend. With variations of the ferrite particle size arising from the La–Zn substitution, the nanofiber morphology changes from the necklace-like structure linking by single elongated plate-like particles to the structure building of multi-particles on the nanofiber cross-section. The specific saturation magnetization of Sr1−x La x Zn x Fe12−x O19 nanofibers initially increases with the La–Zn content, reaching a maximum value 72 A m2 kg−1 at x=0.2, and then decreases with a further La–Zn content increase up to x=0.5, while the coercivity exhibits a continuous reduction from 413 (x=0) to 219 kA m−1 (x=0.5). The mechanism for the La–Zn substitution and the nanofiber magnetic property are analyzed.  相似文献   

11.
Deep-level profiles were measured radially acrossn-type FZ silicon wafers containing A-swirl defects by applying DLTS to an array of Schottky contacts. The trapparameters were obtained very accurately using a computer-fit procedure for the full DLTS peaks. Two acceptor levels atE c −0.49 eV (σ n =6.6×10−16cm2) andE c −0.07 eV (σ n =4.6×10−16cm2) were observed, which varied oppositely to the A-swirl defect density. At short ranges (1–2mm) the trap concentration-profile was smeared out and did not follow the strong fluctuations in the etch pattern. Both levels were measured together with the same concentration. The profiles indicate outdiffusion. A level atE c −0.14 eV (σ n =1.1×10−16cm2) was not related to A-swirl defects. A level atE c −0.11 eV (σ n =1.1×10−15cm2) was only detected in one ingot. The properties of the deep level atE c −0.49 eV are discussed in the light of published DLTS results reported for γ-irradiation, laser annealing after self-implantation, annealing under pressure and oxidation of silicon samples. It is concluded, that this level is related to interstitial silicon rather than to an impurity.  相似文献   

12.
EPR and the method of dielectric losses have been used to investigate Fe3+ centers of axial and orthorhombic symmetry in KTaO3 single crystals. The EPR spectrum of orthorhombic-symmetry Fe3+ obtained in the 8-mm wavelength range at T=77 K is described by the spin-Hamiltonian with parameters g x=1.98, g y=2.01, g z=2.00, D=0.43 cm−1, and E=5.87×10t-2 cm−1. From the dielectric measurement data we have obtained the following parameters of the relaxation of the orthorhombic Fe3+ centers in KTaO3: characteristic relaxation frequency τ 0 −1 =2.33×1012 Hz and activation energy E a=0.044 eV. A model of the orthorhombic Fe3+ center in KTaO3 is discussed within the framework of the kinetic parameters obtained. Fiz. Tverd. Tela (St. Petersburg) 39, 861–864 (May 1997)  相似文献   

13.
R Hasan  S C Arora  D Hans  M S Swami 《Pramana》1982,19(2):133-140
The integral energy spectrum of primary cosmic rays has been obtained. In the energy range (2.4×103−1.1×105 GeV), the spectrum of all nuclei is consistent with a power law of indexγ=1.55±0.06 and the flux of all nuclei is:N(⩾E 0)⋍(5.1±1.8)×10−1×E 0 −1.55 particles/cm2 sterad. sec., whereE 0 is in GeV. The spectrum of primaryα-particles in the energy range (4.4×103−4.8×104) GeV is also consistent with a power law of indexγ=1.71±0.12 and the flux is:N(⩾E 0)=(4.2±1.4)×10−1×E 0 −1.71 , particles per cm2 sterad. sec, whereE 0 is in GeV.  相似文献   

14.
We searched for resonant excitation of the first excited state of the 169Tm nucleus by axions formed inside the Sun by the Primakoff effect, A + 169Tm → 169Tm* → 169Tm + γ (8.41keV). Gamma quanta with an energy of 8.41keV were registered by a sectionalized Si(Li) detector installed in a low-background setup. As a result, we set a new upper limit for the photon to axion coupling constant, g (GeV−1)m A (eV) ≤ 1.06 × 10−5, which for a hadronic axion model corresponds to a mass limit of m A ≤ 169 eV at a 90% confidence level.  相似文献   

15.
A search for the axioelectric absorption of 5.5-MeV solar axions produced in the p + d → 3He + γ (5.5 MeV) reaction was performed with two BGO detectors placed inside a low-background setup. Constraints on the axion-electron coupling constant were obtained for axions with masses in the (0.1–1.0)-MeV range: g Ae ≤ (1.8–9.0) × 10−7. The solar positron flux from A → e + e+ decay was determined for axions with masses m A > 2m e. Using the existing experimental data on the interplanetary positron flux, a new constraint on the axion-electron coupling constant for axions with masses in the (1.2–5.4)-MeV range was obtained: g Ae ≤ (1–5) × 10−17.  相似文献   

16.
A new effect of the reduction in the rate of phonon scattering by the spatially correlated system of iron ions in HgSe:Fe crystals is detected experimentally and calculated theoretically. The thermoelectric power is measured using HgSe:Fe samples with different iron content in the temperature range 7.5–60 K. It is found that the dependence of the thermoelectric power on iron content exhibits remarkable features at T<10 K: the quantity |α(N Fe )| increases as the iron concentration increases to N Fe =5×1018 cm−3, reaches a maximum at N Fe ≈(1–2)×1019 cm−3, but then monotonically decreases with further increases in N Fe . It is shown that the obseved increase in the thermoelectric power is due to a reduction in the rate of phonon scattering by the spatially correlated system of Fe3+ ions. This new effect is analyzed theoretically, and the theoretical results are compared with the experimental data. Zh. éksp. Teor. Fiz. 114, 191–207 (July 1998)  相似文献   

17.
Electron paramagnetic resonance (EPR) study of Cu2+-doped sodium zinc sulfate tetrahydrate is done at liquid nitrogen temperature. Two magnetically equivalent sites for Cu2+ are observed. The spin-Hamiltonian parameters determined by fitting the EPR spectra to the rhombic-symmetry crystalline field are g x  = 2.2356, g y  = 2.0267, g z  = 2.3472, A x  = 27 × 10−4 cm−1, A y  = 54 × 10−4 cm−1and A z  = 88 × 10−4 cm−1. The ground state wave function is also determined. The g-anisotropy is evaluated and compared with the experimental value. With the help of optical study, the nature of bonding in the complex is discussed.  相似文献   

18.
The interaction of ultrashort laser pulses with solid state targets is studied concerning the production of short X-ray pulses with photon energies up to about 10 keV. The influence of various parameters such as pulse energy, repetition rate of the laser system, focusing conditions, the application of prepulses, and the chirp of the laser pulses on the efficiency of this highly nonlinear process is examined. In order to increase the X-ray flux, the laser pulse energy is increased by a 2nd multipass amplifier from 750 μJ to 5 mJ. By applying up to 4 mJ of the pulse energy a X-ray flux of 4×1010 Fe K α photons/s or 2.75×1010 Cu K α photons/s are generated. The energy conversion efficiency is therefore calculated to η Fe≈1.4×10−5 and η Cu≈1.0×10−5. The X-ray source size is determined to 15×25 μm2. By focusing the produced X-rays using a toroidally bent crystal a quasi-monochromatic X-ray point source with a diameter of 56 μm×70μm is produced containing ≈104 Fe K α1 photons/s which permits the investigation of lattice dynamics on a picosecond or even sub-picosecond time scale. The lattice movement of a GaAs(111) crystal is shown as a typical application.  相似文献   

19.
The electron paramagnetic resonance study of Cu2+-doped bis(l-asparaginato)Mg(II) is performed at room temperature. Two magnetically non-equivalent sites for Cu2+ are observed. The spin-Hamiltonian parameters evaluated by fitting spectra to the crystalline field of rhombic symmetry are as follows: g x  = 2.0420 ± 0.0002, g y  = 2.0808 ± 0.0002, g z  = 2.3600 ± 0.0002, A x  = (99 ± 2) × 10−4 cm−1, A y  = (108 ± 2) × 10−4 cm−1, A z  = (140 ± 2) × 10−4 cm−1. The ground state wave function of Cu2+ is also determined. The g-anisotropy is estimated and compared with the experimental value. Further, with the help of optical study the nature of bonding of a metal ion with different ligands in the complex is discussed.  相似文献   

20.
This article describes a method for silica coating of Co–Pt alloy nanoparticles prepared in the presence of poly(vinylpyrrolidone) (PVP) as a stabilizer. The Co–Pt nanoparticles were prepared in an aqueous solution at 25–80 °C from CoCl2 (3.0 × 10−4 M), H2PtCl6 (3.0 × 10−4 M), PVP (0–10 g/L), and NaBH4 (4.8 × 10−3–2.4 × 10−2 M). The silica coating was performed for the Co–Pt nanoparticle colloid containing the PVP ([Co] = [Pt] = 3.0 × 10−5 M) at 25 °C in (1/4) (v/v) water/ethanol solution with tetraethoxyorthosilicate (TEOS) (7.2 × 10−5–7.2 × 10−3 M) and ammonia (0.1–1.0 M). Silica particles, which had an average size of 43 nm and contained multiple cores of Co–Pt nanoparticles with a size of ca. 8 nm, were produced at 1.4 × 10−3 M TEOS and 0.5 M ammonia after the preparation of Co–Pt nanoparticles at 80 °C, 5 g/L PVP, and 2.4 × 10−2 M NaBH4. Their core particles were fcc Co–Pt alloy crystallites. Their saturation magnetization was 2.0-emu/g sample, and their coercive field was 12 Oe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号