首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This is a reply to the Comment by Bliokh on our paper that appeared in Opt. Commun. 281 (2008) 3427. After a brief introduction of the representation theory of vector electromagnetic beams advanced in a recent paper, I point out that the Imbert-Fedorov effect is the evidence of the change of the beam parameter Θ and the polarization ellipticity σ caused by the reflection or transmission process in the linear approximation. Then I explain that it is because the linear approximation of the incident beam that we used in our paper had been assumed in previous works that we reproduced their results.  相似文献   

2.
[1]M.Alford,K.Rajagopal,and F.Wilczek,Phys.Lett.B 422 (1998) 247; Nucl.Phys.B 537 (1999) 443. [2]M.Gyulassy and L.McLerran,arXiv:nucl-th/0405013;E.V.Shuryak,arXiv:hep-ph/0405066. [3]K.Rajagopal and F.Wilczek,hep-ph/0011333. [4]M.Alford,Chris Kouvaris,and K.Rajagopal,hepph/0406137. [5]Y.Nambu and G.Jona-Lasinio,Phys.Rev.122 (1961)345. [6]R.T.Cahill and C.D.Roberts,Phys.Rev.D 32 (1985)2419. [7]R.T.Cahill and Susan M.Ganner,hep-ph/9812491. [8]A.W.Steiner,S.Reddy,and M.Prakash,Phys.Rev.D 66 (2002) 094007. [9]P.Amore,M.C.Birse,J.A.McGovern,and N.R.Walet,Phys.Rev.D 65 (2002) 074005. [10]M.Alford and K.Rajagopal,JHEP 0206 (2002) 031. [11]Xiao-Fu Li,Yu-Xin Liu,Hong-Shi Zong,and En-GuangZhao,Phys.Rev.C 58 (1998) 1195. [12]H.Reinhardt,Phys.Lett.B 244 (1990) 2. [13]Steven Weinberg,The Quantum Theory of Fields,Vol.2,Cambridge University Press,Cambridge (1996) p.348.  相似文献   

3.
[1]V.D.Burkert,Phys.Lett.B 72 (1997) 109. [2]S.Capstick and W.Roberts,Prog.Part.Nucl.Phys.45 (2000) S241,and references therein. [3]B.S.Zou,Nucl.Phys.A 675 (2000) 167c; B.S.Zou,Nucl.Phys.A 684 (2001) 330; BES Collaboration (J.Z.Bai,et al.) Phys.Lett.B 510 (2001) 75; BES Collaboration (M.Ablikim,et al.),hep-ex/0405030. [4]R.Sinha and Susumu Okubo,Phys.Rev.D 30 (1984)2333. [5]W.H.Liang,P.N.Shen,B.S.Zou,and A.Faessler,Euro.Phys.J A 21 (2004) 487. [6]Particle Data Group,Euro.Phys.J.C 15 (2000) 1. [7]K.Tsushima,A.Sibrtsev,and A.W.Thomas,Phys.Lett.B 390 (1997) 29. [8]J.Kogut,Rev.Mod.Phys.51 (1979) 659; Rev.Mod.Phys.55 (1983) 775. [9]Q.Haider and L.C.Liu,J.Phys.G 22 (1996) 1187; L.C.Liu and W.X.Ma,J.Phys.G 26 (2000) L59. [10]V.G.J.Stoks,R.A.M.Klomp,C.P.F.Terheggen,and J.J.de Swart,Phys.Rev.C 49 (1994) 2950. [11]H.Haberzettl,C.Bennhold,T.Mart,and T.Feuster,Phys.Rev.C 58 (1998) R40. [12]Y.Oh,A.I.Titov,and T.-S.H.Lee,Phys.Rev.C 63(2001) 25201.  相似文献   

4.
Two efficient protocols of quantum secure direct communication with authentication [Chin. Phys. Lett. 25 (2008) 2354] were recently proposed by Liu et al. to improve the efficiency of two protocols presented in [Phys. Rev. A 75 (2007) 026301] by four Pauli operations. We show that the high efficiency of the two protocols is at the expense of their security. The authenticator Trent can reach half the secret by a particular attack strategy in the first protocol. In the second protocol, not only Trent but also an eavesdropper outside can elicit half-information about the secret from the public declaration.  相似文献   

5.
[1]J. Nagamatsu, N. Nakagava, T. Muranaka, Y. Zenitani,and J. Akimitsu, Nature 410 (2001) 63. [2]C. Buzea and T. Yamashita, Supercond. Sci. Techn. 14(2001) R115. [3]S. Budko, G. Lapertot, C. Petrovic, C.E. Gunningham, N.Anderson, and P.C. Canfield, Phys. Rev. Lett. 86 (2001)1877. [4]H. Kotegawa, K. Ishida, Y. Kitaoka, T. Muranaka, and J. Akimitsu, Phys. Rev. Lett. 87 (2001) 127001. [5]J. Kortus, I.I. Mazin, K.D. Belashchenko, V.P. Antropov,and L.L. Boyer, Phys. Rev. Lett. 87 (2001) 4656. [6]A. Liu, I.I. Mazin, and J. Kortus, Phys. Rev. Lett. 87(2001) 087005. [7]X.K. Chen, M.J. Konstantinovich, J.C. Irwin, D.D.Lawrie, and J.P. Frank, Phys. Rev. Lett. 87 (2001)157002. [8]H. Giublio, D. Roditchev, W. Sacks, R. Lamy, D.X.Thanh, J. Kleins, S. Miraglia, D. Fruchart, J. Markus,and P. Monod, Phys. Rev. Lett. 87 (2001) 177008. [9]F. Bouquet, R.A. Fisher, N.E. Phillips, D.G. Hinks, and J.D. Jorgensen, Phys. Rev. Lett. 87 (2001) 04700. [10]S.V. Shulga, S.-L. Drechsler, H. Echrig, H. Rosner, and W. Pickett, Cond-mat/0103154 (2001). [11]A.A. Golubov, J. Kortus, O.V. Dolgov, O. Jepsen, Y.Kong, O.K. Andersen, B.J. Gibson, K. Ahn, and R.K.Kremer, J. Phys. Condens. Matter 14 (2002) 1353. [12]H. Doh, M. Sigrist, B.K. Chao, and Sung-Ik Lee, Phys.Rev. Lett. 85 (1999) 5350. [13]I.N. Askerzade, N. Guclu, and A. Gencer, Supercond. Sci.Techn. 15 (2002) L13. [14]I.N. Askerzade, N. Guclu, A. Gencer, and A. Kiliq, Supercond. Sci. Techn. 15 (2002) L17. [15]I.N. Askerzade and A. Gencer, J. Phys. Soc. Jpn. 71(2002) 1637. [16]I.N. Askerzade, Physica C 397 (2003) 99. [17]V.V. Anshukova, B.M. Bulychev, A.I. Golovashkin, L.I.Ivanova, A.A. Minakov, and A.P. Rusakov, Phys. Solid State 45 (2003) 1207. [18]A.A. Abrikosov, Fundamentals of the Theory of Metals,North-Holland, Amsterdam (1988). [19]M.N. Kunchur, S.I. Lee, and W.N. Kang, Phys. Rev. B 68 (2003) 064516.  相似文献   

6.
In a recent article [L. Wei, Y.-N. Wang, Phys. Lett. A 333 (2004) 303], Li Wei and You-Nian Wang studied the propagation of electromagnetic wave in single-wall carbon nanotubes and presented different expressions of the dispersions relations of TE and TM modes, respectively. Here we have derived the correct form of the dispersion relation for TM mode on low-frequency electromagnetic wave. It is shown numerically that asymptotic behaviours of the TM and TE modes are quite similar in single-wall carbon nanotubes.  相似文献   

7.
Y. Braiman  T. Egami 《Physica A》2009,388(10):1978-1984
We describe the oscillatory crack propagation for small propagation velocities at the atomistic scale that was recently observed for brittle metallic glasses [G. Wang, Y.T. Wang, Y.H. Liu, M.X. Pan, D.Q. Zhao, W.H. Wang, Appl. Lett. 89 (2006) 121909; G. Wang, D.Q. Zhao, H.Y. Bai, M.X. Pan, A.L. Xia, B.S. Han, X.K. Xi, Y. Wu, W.H. Wang, Phys. Rev. Lett. 98 (2007) 235501]. Based on a simple model of crack propagation [Y. Braiman, T. Egami, Phys. Rev. E, 77 (2008) 065101(R)], we derived and analyzed expressions for the feature size, oscillation period, and maximum strain accumulated in the material.  相似文献   

8.
通过介绍六粒子纠缠态的新应用研究,提出了一个二粒子任意态的信息分离方案.在这个方案中,发送者Alice、控制者Charlie和接受者Bob共享一个六粒子纠缠态,发送者先执行两次Bell基测量|然后控制者执行一次Bell基测量|最后接受者根据发送者和控制者的测量结果,对自己拥有的粒子做适当的幺正变换,从而能够重建要发送的二粒子任意态.这个信息分离方案是决定性的,即成功概率为100%.与使用相同的量子信道进行二粒子任意态的信息分离方案相比,本文提出的方案只需要进行Bell基测量而不需要执行多粒子的联合测量,从而使得这个方案更简单、更容易,并且在目前的实验室技术条件下是能够实现的.  相似文献   

9.
Recently, a clear long-sought Debye mode (D) in barium titanate (BT) was identified [J. Hlinka, T. Ostapchuk, D. Nuzhnyy, J. Petzelt, P. Kuzel, C. Kadlec, P. Vanek, I. Ponomareva, L. Bellaiche, Phys. Rev. Lett. 101 (2008) 167402] and this mode was shown to originate from the polar coordinate that also generates the so-called Slater mode (S). The inter-relations between the D mode and the normal A1-type phonon modes were studied by those authors using a four-mode phenomenological model. The present work is to offer an atomistic support of their work and to better illustrate the nature of and the couplings between these modes. In addition, we extend the as-obtained insights to the investigation of the nature of the low frequency Raman peaks that were found in 18O-substituted strontium titanate (ST) many years ago [M. Itoh, R. Wang, Y. Inaguma, T. Yamaguchi, Y.-J. Shan, T. Nakamura, Phys. Rev. Lett. 82 (1999) 3540]. Thus, our work provides important information on the connections between the lattice dynamics of BT and ST.  相似文献   

10.
[1]J.H. Hamilton,A. VRamayya, W.T. Pinkston, et al.,Phys. Rev. Lett. 32 (1974) 239. [2]R. Julin, K. Helariutta, and M. Muikku, J. Phys. G 27(2001) R109. [3]J.H. Hamilton, Nukleonika 24 (1979) 561. [4]W.C. Ma, et al., Phys. Lett. B 139 (1984) 276. [5]R. Bengtsson, et al., Phys. Lett. B 183 (1987) 1. [6]S. Yoshida and N. Takigawa, Phys. Rev. C 55 (1996)1255. [7]T. Niksic, D. Vretenar, P. Ring, et al., Phys. Rev. C 65(2002) 054320. [8]F.G. Condev, M.P. Carpenter, R.V.F. Janssens, et al.,Phys. Lett. B 528 (2002) 221. [9]D.G. Jenkins, A.N. Andreyev, R.D. Page, et al., Phys.Rev. C 66 (2002) 011301(R). [10]B.D. Serot and J.D. Walecka, Adv. Nuc]. Phys. 16 (1986)1. [11]P. Ring, Prog. Part. Nucl. Phys. 37 (1996) 193. [12]J. Meng and P. Ring, Phys. Rev. Lett. 77 (1996) 3963. [13]J. Meng and P. Ring, Phys. Rev. Lett. 80 (1998) 460. [14]S.K. Patra, S. Yoshida, N. Takigawa, and C.R. Praharaj,Phys. Rev. C 50 (1994) 1924. [15]S. Yoshida, S.K. Patra, N. Takigawa, and C.R. Praharaj,Phys. Rev. C 50 (1994) 1938. [16]G.A. Lalazissis and P. Ring, Phys. Lett. B 427 (1998)225. [17]Jun-Qing Li, Zhong-Yu Ma, Bao-Qiu Chen, and Yong Zhou, Phys. Rev. C 65 (2002) 064305. [18]G. Audi and A.H. Wapstra, Nucl. Phys. A 565 (1993) 1. [19]G. Audi and A.H. Wapstra, Nucl. Phys. A 595 (1995)409. [20]G. Audi and A.H. Wapstra, Nucl. Phys. A 624 (1997) 1. [21]P. MOller and J.R. Nix, Atom. Data and Nucl. Data Table 59 (1995) 307.  相似文献   

11.
[1]G.T.Bodwin,E.Braaten,and G.P.Lepage,Phys.Rev.D 51 (1995) 1125;[Erratum-ibid.D 55 (1997) 5853][arXiv:hep-ph/9407339]; J.Boltz,P.Kroll,and G.A.Schulre,Phys.Lett.B 392 (1997) 198; J.Boltz,P.Kroll,and G.A.Schulre,Phys.J.C 2 (1998) 705. [2]S.M.Wong,Nucl.Phys.A 674 (2000) 185; S.M.Wong,Eur.Phys.J.C 14 (2000) 643. [3]J.Z.Bai,Y.Ban,J.G.Bian,et al.,Phys.Rev.D 67 (2003)112001. [4]M.Jacob and G.C.Wick,Ann.Phys.7 (1959) 404. [5]S.U.Chung,Phys.Rev.D 48 (1993) 1225; S.U.Chung,Phys.Rev.D 57 (1998) 431; B.S.Zou and D.V.Bugg,Eur.Phys.J.A 16 (2003) 537. [6]Particle Data Group,Phys.Lett.B 592 (2004) pp.924-966. [7]M.A.Doncheski,et al.,Phys.Rev.D 42 (1990) 2293; E.Eichten,et al.,Phys.Rev.D 21 (1980) 203; K.J.Sebastian,Phys.Rev.D 26 (1982) 2295; G.Hardekopf and J.Sucher,Phys.Rev.D 25 (1982) 2938; R.McClary and N.Byers,Phys.Rev.D 28 (1983) 1692; P.Moxhay and J.L.Rosner,Phys.Rev.D 28 (1983) 1132. [8]B.S.Zou and F.Hussain,Phys.Rev.C 67 (2003) 015204.  相似文献   

12.
[1]R. Casalbuoani, A. Deandrea, and M. Oertel, JHEP 032(2004) 0402. [2]G. Hooft, In Search of the Ultimate Building Blocks, Cambridge University Press, Cambridge (1997). [3]J. Belazey, Searches for New Physics at Hadron Coliders,Northern Illinois University (2005). [4]N. Arkani-hamed, A.G. Cohen, and H. Georgi, Phys. Lett.B 513 (2001) 232 [hep-ph/0105239]. [5]I. Low, W. Skiba, and D. Smith, Phys. Rev. D 66 (2002)072001 [hep-ph/0207243]. [6]N. Arkani-hamed, A.G. Cohen, E. Katz, and A.E. Nelson,JHEP 0207 (2002) 304 [hep-ph/0206021]. [7]N. Arkani-hamed, A.G. Cohen, E. Katz, A.E. Nelson, T.Gregoire, and J. G. Wacker, JHEP 0208 (2002) 021 [hepph/0206020]. [8]T. Gregoire and J.G. Wacker, JHEP 0208 (2002) 019[hep-ph/0206023]. [9]For a recent review, see e.g., M. Schmaltz, Nucl. Phys. B (Proc. Suppl.) 117 (2003) 40. [10]N. Arkani-hamed, A.G. Cohen, T. Gregoire, and J.G.Jacker, JHEP 0208 (2002) 020 [hep-ph/0202089]. [11]or a recent review, see e.g., M. Schmaltz, Nucl. Phys.Proc. Suppl. 117 (2003) 40 [hep-ph/0210415]. [12]E. Katz, J. Lee, A.E. Nelson, and D.G. Walker, hepph/0312287. [13]M. Beneke, I. Efthymiopoulos, M.L. Mangano, et al., hepph/0003033. [14]D.O. Carlson and C.-P. Yuan, hep-ph/9211289. [15]R. Frey, D. Gerdes, and J. Jaros, hep-ph/9704243. [16]G. Eilam, J.L. Hewett, and A. Soni, Phys. Rev. D 44(1991) 1473; W.S. Hou, Phys. Lett. B 296 (1992) 179; K.Agashe and M. Graesser, Phys. Rev. D 54 (1996) 4445;M. Hosch, K. Whisnant, and B.L. Young, Phys. Rev. D56 (1997) 5725. [17]C.S. Li, R.J. Oakes, and J.M. Yang, Phys. Rev. D 49(1994) 293, Erratum-ibid. D 56 (1997) 3156; G. Couture,C. Hamzaoui, and H. Koenig, Phys. Rev. D 52 (1995)1713; G. Couture, M. Frank, and H. Koenig, Phys. Rev.D 56 (1997) 4213; G.M. de Divitiis, et al., Nucl. Phys. B 504 (1997) 45. [18]B. Mele, S. Petrarca, and A. Soddu, Phys. Lett. B 435(1998) 401. [19]B. Mele, hep-ph/0003064. [20]J.M. Yang and C.S. Li, Phys. Rev. D 49 (1994) 3412,Erratum, ibid. D 51 (1995) 3974; J.G. Inglada, hepph/9906517. [21]L.R. Xing, W.G. Ma, R.Y. Zhang, Y.B. Sun, and H.S.Hou, Commun. Theor. Phys. (Beijing, China) 41 (2004)241. [22]L.R. Xing, W.G. Ma, R.Y. Zhang, Y.B. Sun, and H.S.Hou, Commun. Theor. Phys. (Beijing, China) 40 (2003)171. [23]T. Han, H.E. Logan, B. McElrath, and L.T. Wang, Phys.Rev. D 67 (2003) 095004. [24]I. Low, W. Skiba, and D. Smith, Phys. Rev. D 66 (2002)072001. [25]T. Han, H.E. Logan, B. McElrath, and L.T. Wang, hepph/0302188. [26]A.J. Buras, A. Poschenrieder, and S. Uhlig, hepph/0410309. [27]S. Eidelman, et al., Phys. Lett. B 592 (2004) 1. [28]F. Legerlehner, DESY 01-029, hep-ph/0105283.  相似文献   

13.
We present a solution to the problem of reflection and transmission of a polarized paraxial light beam at an interface between two homogeneous media by using a two-form amplitude and an extension matrix to represent the vectorial angular spectrum of a three-dimensional (3D) light beam. We derive general formulas for the Imbert-Fedorov (IF) shift of the reflected and transmitted beams of a polarized paraxial light beam. The IF shift of two different types of polarized beams is calculated, and the influence of the polarization state and the polarization feature of the vectorial angular spectrum on the IF shift is discussed.  相似文献   

14.
Quantum correlations in a family of two-qubit separable classical-quantum correlated states are intensively studied with four different approaches, namely, quantum discord [Phys. Rev. Lett. 88 (2002) 017901], measurement- induced disturbance (MID) [Phys. Rev. A 77 (2008) 022301], ameliorated MID [J. Phys. A: Math. Theor. 44 (2011) 352002] and quantum dissonance [Phys. Rev. Lett. 104 (2010) 080501]. Quantum correlations captured with different approaches are compared and discussed so that their three distinct features are exposed.  相似文献   

15.
Quantum correlations in a family of two-qubit separable classical-quantum correlated states are intensively studied with four diferent approaches,namely,quantum discord[Phys.Rev.Lett.88(2002)017901],measurementinduced disturbance(MID)[Phys.Rev.A 77(2008)022301],ameliorated MID[J.Phys.A:Math.Theor.44(2011)352002]and quantum dissonance[Phys.Rev.Lett.104(2010)080501].Quantum correlations captured with diferent approaches are compared and discussed so that their three distinct features are exposed.  相似文献   

16.
[1]C.O.Weiss and R.Vilaseca,Dynamics of Lasers,VCH,Weinheim (1991); Instabilities and Chaos in Quantum Optics,eds.F.T.Arecchi and R.G.Harrison,Springer-Verlag,Berlin (1987). [2]H.Haken,Phys.Lett.A 53 (1975) 77. [3]Ju Rui,Huang Hong-Bin,Yang Peng,Xie Xia,and Zhao Huan,Commun.Theor.Phys.(Beijing,China) 44 (2005) 65; Ju Rui,Zhang Ya-Jun,Huang Hong-Bin,and Zhao Huan,Acta Phys.Sin.53 (2004) 2191 (in Chinese). [4]C.Z.Ning and H.Haken,Z.Phys.B 77 (1989) 247; B 77 (1989) 157; B 77 (1989) 163; J.Zakrenwski and M.Lewenstein,Phys.Rev.A 45 (1992) 2057. [5]G.J.deValearcel,E.Roldan,and R.Vilaseca,Phys.Rev.A 45 (1992) R2674; Phys.Rev.A 49 (1994) 1243. [6]X.Xie,H.B.Huang,F.Qian,Y.J.Zhang,P.Yang,and G.X.Qi,Commun.Theor.Phys.(Beijing,China) 46 (2006) 1042. [7]X.L.Deng,H.Q.Ma,B.D.Chen,and H.B.Huang,Phys.Lett.A 290 (2001) 77. [8]C.Benkert,and M.O.Scully,Phys.Rev.A 42 (1990) 2817. [9]M.O.Scully and M.S.Zubairy,Quantum Optics,Cambridge University Press,Cambridge (1997).  相似文献   

17.
The open electron resonator, described by Duncan et al. [D.S. Duncan, M.A. Topinka, R.M. Westervelt, K.D. Maranowski, A.C. Gossard, Phys. Rev. B 64 (2001) 033310. [1]], is a mesoscopic device that has attracted considerable attention due to its remarkable behaviour (conductance oscillations), which has been explained by detailed theories based on the behaviour of electrons at the top of the Fermi sea. In this work, we study the resonator using the simple quantum quantum electrical circuit approach, developed recently by Li and Chen [Y.Q. Li, B. Chen, Phys. Rev. B 53 (1996) 4027. [2]]. With this approach, and considering a very simple capacitor-like model of the system, we are able to theoretically reproduce the observed conductance oscillations. A very remarkable feature of the simple theory developed here is the fact that the predictions depend mostly on very general facts, namely, the discrete nature of electric charge and quantum mechanics; other detailed features of the systems described enter as parameters of the system, such as capacities and inductances.  相似文献   

18.
In a recent Letter [F.G. Deng, X.H. Li, H.Y. Zhou, Phys. Lett. A 372 (2008) 1957], an efficient high-capacity quantum secret sharing scheme was proposed. However, in this comment, it is shown that the protocol does not complete the task of secret sharing well when the message sender uses the nonorthogonal entangled states as the quantum information carriers. Finally a feasible improvement of this quantum secret sharing protocol is proposed.  相似文献   

19.
We investigate the symmetry reduction for the two-dimensional incompressible Navier-Stokes equation in conventional stream function form through Lie symmetry method and construct some similarity reduction solutions. Two special cases in [D.K. Ludlow, P.A. Clarkson, and A.P. Bassom, Stud. Appl. Math. 103 (1999) 183] and a theorem in [S.Y. Lou, M. Jia, X.Y. Tang, and F. Huang, Phys. Rev. E 75 (2007) 056318] are retrieved.  相似文献   

20.
Yan Liu 《Physics letters. A》2009,373(41):3741-3742
In a previous work [Z.D. Wang, Y.R. Liu, L. Yu, X.H. Liu, Phys. Lett. A 356 (2006) 346] an exponential stability analysis for a class of Markovian jumping neural networks (MJNNs) was presented. In this Letter we employ the same technique to extend the results for MJNNs with time-varying delays and mode estimation, appropriate for active fault-tolerant control systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号