首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel PEO-based blends solid polymer electrolytes doping liquid crystalline ionomers (LCI), PEO/PMMA/LiClO4/LCI, and PEO/LiClO4/LCI were prepared by solution casting technology. Scanning electron microscope (SEM) and energy-dispersive spectroscopy (EDS) analysis proved that LCI uniformly dispersed into the solid electrolytes and restrained phase separation of PEO and PMMA. Differential scanning calorimetry (DSC) results showed that LCI decreases the crystallinity of blends solid polymer electrolytes. Thermogravimetric analysis (TGA) proved LCI not only improved thermal stability of PEO/PMMA/LiClO4 blends but also prevent PEO/PMMA from phase separation. Infrared spectra results illustrated that there exists interaction among Li+ and O, and LCI that promotes the synergistic effects between PEO and PMMA. The EIS result revealed that the conductivity of the electrolytes increases with LiClO4 concentration in PEO/PMMA blends, but it increases at first and reaches maximum value of 2.53?×?10?4 S/cm at 1.0 % of LCI. The addition of 1.0 % LCI increases the conductivity of the electrolytes due to that LCl promoting compatibility and interaction of PEO and PMMA. Under the combined action of rigidity induced crystal unit, soft segment and the terminal ionic groups in LCI, PEO/PMMA interfacial interaction are improved, the reduction of crystallinity degree of PEO leads Li+ migration more freely.  相似文献   

2.
Studies on PEO-based sodium ion conducting composite polymer films   总被引:1,自引:0,他引:1  
A sodium ion conducting composite polymer electrolyte (CPE) prepared by solution-caste technique by dispersion of an electrochemically inert ceramic filler (SnO2) in the PEO–salt complex matrix is reported. The effect of filler concentration on morphological, electrical, electrochemical, and mechanical stability of the CPE films has been investigated and analyzed. Composite nature of the films has been confirmed from X-ray diffraction and scanning electron microscopy patterns. Room temperature d.c. conductivity observed as a function of filler concentration indicates an enhancement (maximum) at 1–2 wt% filler concentration followed by another maximum at ∼10 wt% SnO2. This two-maxima feature of electrical conductivity as a function of filler concentration remains unaltered in the CPE films even at 100 °C (i.e., after crystalline melting), suggesting an active role of the filler particles in governing electrical transport. Substantial enhancement in the voltage stability and mechanical properties of the CPE films has been noticed on filler dispersion. The composite polymer films have been observed to be predominantly ionic in nature with t ion ∼ 0.99 for 1–2 wt% SnO2. However, this value gets lowered on increasing addition of SnO2 with t ion ∼ 0.90 for 25 wt% SnO2. A calculation of ionic and electronic conductivity for 25 wt% of SnO2 film works out to be ∼2.34 × 10−6 and 2.6 × 10−7 S/cm, respectively.  相似文献   

3.
《Solid State Ionics》2006,177(13-14):1179-1183
In this paper, the PEO-based composite polymer electrolytes are presented, in which phosphonic acid, methyl-, bis[(5-ethyl-2-methyl-2-oxido-1,3,2-dioxaphosphorinan-5-yl)methyl]ester (middle MW cyclic phosphate) works as both the plasticizer and the flame-retarding additive. The flame-retarding ability of middle MW cyclic phosphate was proved through a designed flammability test. The effect of middle MW cyclic phosphate on the thermal stability of CPEs was demonstrated by thermogravimetry (TG) test. Electrochemical measurements prove that the CPEs containing middle MW cyclic phosphate have a very wide electrochemical stability window at both the room temperature and 80 °C, and can be used in lithium batteries with a large choice of redox couples as cathode materials.  相似文献   

4.
Polyethylene oxide (PEO) based polymer electrolytes with BaTiO3 as filler and Li(C2F5SO2)2N as salt have been examined in lithium polymer batteries. The aluminum disolution potential in PEO-Li(C2F5SO2)2N was estimated to be 4.1 V vs. Li/Li+ at 80 °C, which was compared to that of 3.8 V vs. Li/Li+ in PEO-Li(CF3SO2)2N. The electrical conductivity of the system was measured as a function of O/Li ratio. The highest conductivity was observed in O/Li=8. The conductivity was 1.65×10−3 S/cm at 80 °C and 1.5×10−5 S/cm at 25 °C. The interfacial resistance of Li/polymer electrolyte/Li annealed at 80 °C for 15 days was lower than 100 Ωcm2. Paper presented at the 8th EuroConference on Ionics, Carvoeiro, Algarve, Portugal, Sept. 16 – 22, 2001.  相似文献   

5.
In this work we report a new composite, PEO-based lithium polymer electrolyte containing a micro-sized, nanoporous zirconium–oxide–sulfate (Zr–O–SO4) filler synthesized by a surfactant templating sol–gel route. By thermal and transport studies, we show that the particular morphology of the filler enhances the properties of the material leading to a solvent-free electrolyte having unique features in terms of ionic conductivity, lithium ion transference number and thermal behaviour. Finally, the galvanostatic test of the lithium battery prepared using lithium iron phosphate, LiFePO4, as the cathode, lithium metal as the anode and the studied membrane as the electrolyte, shows enhanced performances also at the medium–low temperatures.  相似文献   

6.
《Solid State Ionics》2006,177(15-16):1287-1291
Silane-functionalized mesoporous silica SBA-15 particles with ultra-high specific surface area and large pore size were used as fillers in PEO-based solid electrolytes. FT-IR results confirmed the silane functionalization of SBA-15. Ionic conductivity and lithium ion transference number of the composite polymer electrolytes were found to simultaneously reach a high value of 5 wt.% silane-functionalized SBA-15 introduced in the matrix. It may be due to the combination effects of the unique structure of SBA-15 (i.e., ultra-high specific surface area and large pore size), the particularly functionalized surface of SBA-15 to promote fast ion transfer, and the good dispersion and compatibility of silane-functionalized SBA-15 in the composite polymer electrolytes. The results suggest an alternative way to improve the performance of solid polymer electrolytes.  相似文献   

7.
《Solid State Ionics》2006,177(7-8):709-713
A novel composite microporous polymer electrolyte based on poly(vinylidene fluoride), poly(ethylene oxide), and microporous molecular sieves ZSM-5 (denoted as PVDF–PEO/ZSM-5) was prepared by a simple phase inversion technique. PEO can obviously improve the pore configuration, such as pore size, porosity, and pore connectivity of PVDF-based microporous membranes, results in a high room temperature ionic conductivity. Microporous molecular sieves ZSM-5 can further improve the mechanical strength of PVDF–PEO blends and form special conducting pathway in PVDF–PEO matrix by absorb liquid electrolyte in its two-dimensional interconnect channels. The high room temperature ionic conductivity combined with good mechanical strength implies that PVDF–PEO/ZSM-5 based composite microporous polymer electrolyte can be used as candidate electrolyte and/or separator material for high-performance rechargeable lithium batteries.  相似文献   

8.
In the development of rechargeable lithium polymer batteries it is of paramount importance to control the passivation phenomena occurring at the lithium electrode interface. It is well estabilished that the type and the growth of the lithium passivation layer is unpredictably influenced by the presence of liquid components and/or impurities in the electrolyte. Therefore, one approach to improve the stability of the lithium interface is the use of liquid-free, highly pure electrolytes. The electrochemical properties of a composite polymer electrolyte obtained by hot pressing a mixture of polyethylene oxide (PEO), a lithium salt (lithium tetrafluoroborate, LiBF4) and a powdered ceramic additive (γ-LiAlO2), will be presented and discussed. The electrochemical characterization included the determination of the ionic conductivity, the anodic break-down voltage and, most importantly, the stability of the lithium metal electrode interface and the lithium stripping-plating process efficiency. The main feature of this dry, true solid-state electrolyte is a very good compatibility with the lithium metal electrode, demonstrated by a very high lithium cycling efficiency, which approaches a value of 99%. Paper presented at the 5th Euroconference on Solid State Ionics, Benalmádena, Spain, Sept. 13–20, 1998.  相似文献   

9.
Fan  Lidan  Yu  Liwei  Xu  Feng  Qin  Gang  Chen  Qiang 《Journal of nanoparticle research》2021,23(10):1-12
Journal of Nanoparticle Research - The electronic sensitivity and reactivity of polyamidoamine (PAMAM) and polyester dendrimers toward favipiravir (T705) were inspected using density functional...  相似文献   

10.
Novel poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP))-based composite polymer electrolyte (CPE) membranes doped with different contents of nano-SiO2 using urea as a pore-forming agent were prepared by phase inversion method, and the desired CPEs were obtained by being immersed into 1.0 M LiPF6-EC/DMC/EMC electrolytes for 0.5 h. The physicochemical properties of the CPEs were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV). The results show that the CPEs doped with 10 % nano-SiO2 exhibit the best performance, in which the SEM images of the as-prepared polymer membranes present homogeneous surface and abundant micropores; the uptake ratio is up to 107.4 %; EIS and LSV analysis also show that the ionic conductivity at room temperature and electrochemical stability window of the modified membrane can reach 3.652 mS cm?1 and 5.0 V, respectively; the interfacial resistance R i is 380 Ω cm?2 in the first day,then increases rapidly to a stable value about 500 Ω cm?2 in a 5-day storage at room temperature. The Li/As-fabricated CPEs/LiCoO2 cell also shows excellent charge-discharge performance, which suggests that it can be a potential electrolyte for the lithium-ion battery.  相似文献   

11.
The unit cell of dehydrated zeolite A is cubic and its {100} faces constitute “windows” of a large cavity located at the center. In sodium-form zeolite A, Na+ partially blocks the window, through which oxygen but not nitrogen molecules can pass. By ion-exchanging two Na+s with one Ca2+, an unblocked or “open window” can be introduced. By preparing well defined (Na, Ca)-A zeolites having various compositions, the nitrogen percolation process was quantitatively studied. A curve for the number of percolatable cells vs the open-window concentration was deduced, and compared with Hammersley's theoretical curve. The theoretical curve has a sharp cut-oft at a concentration of one open-window per unit cell. The observed curve was steeper in this transition region than the theoretical one, but has a tail in the region corresponding to lower concentrations of open windows. The first tendency is ascribed to an ordered alignment of open-windows in their spatial distribution. The second is attributed to incompleteness of the blocking action of Na+. Substituted Ca2+ and vacant cation sites change the Madelung potential at the Na+ site, so that the curvature of the potential valley for Na+ may become gentle. As a result, Na+ can easily be displaced and make way for a visiting nitrogen molecule.  相似文献   

12.
We report on the synthesis of a metal–polymer composite material using an interfacial polymerization approach. The advantage of this approach is to form an intimate contact be‐tween the metal and polymer, which is an important param‐ eter for the synthesis of a nanocomposite material. It was found that polymerization of o‐phenylenediamine (PDA) us‐ing HAuCl4 as an oxidizing agent leads to the formation of poly‐PDA with a fiber‐like morphology, while the reduction of HAuCl4 results in the formation of well dispersed and sta‐bilized gold nanoparticles within the polymer matrix. The synthesis was carried out at the organic–aqueous interface. The resultant composite material was purely hydrophilic in nature and deposited at the aqueous fraction of the reaction medium. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
14.
The ionic liquid polymer electrolyte (IL-PE) membrane is prepared by ultraviolet (UV) cross-linking technology with polyurethane acrylate (PUA), methyl methacrylate (MMA), ionic liquid (Py13TFSI), lithium salt (LiTFSI), ethylene glycol dimethacrylate (EGDMA), and benzoyl peroxide (BPO). N-methyl-N-propyl pyrrolidinium bis(trifluoromethanesulfonyl)imide (Py13TFSI) ionic liquid is synthesized by mixing N-methyl-N-propyl pyrrolidinium bromide (Py13Br) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). The addition of Py13TFSI to polymer electrolyte membranes leads to network structures by the chain cross-linking. The resultant electrolyte membranes display the room temperature ionic conductivity of 1.37 × 10?3 S cm?1 and the lithium ions transference number of 0.22. The electrochemical stability window of IL-PE is about 4.8 V (vs. Li+/Li), indicating sufficient electrochemical stability. The interfacial resistances between the IL-PE and the electrodes have the less change after 10 cycles than before 10 cycles. IL-PE has better compatibility with the LiFePO4 electrode and the Li electrode after 10 cycles. The first discharge performance of Li/IL-PE/LiFePO4 half-cell shows a capacity of 151.9 mAh g?1 and coulombic efficiency of 87.9%. The discharge capacity is 131.9 mAh g?1 with 95.5% coulombic efficiency after 80 cycles. Therefore, the battery using the IL-PE exhibits a good cycle and rate performance.  相似文献   

15.
Lorenzo Carbone  Jusef Hassoun 《Ionics》2016,22(12):2341-2346
Herein, we report a polymer cell using high-energy lithium metal anode, a composite sulfur-carbon cathode, and polyethylene oxide (PEO)-lithium trifluoromethan sulfonate (LiCF3SO3) electrolyte. The limited cost of raw materials as well as the very simple synthetic procedures, involving planetary ball milling (for S-C cathode) and solvent casting (for PEO-electrolyte), are expected to reflect into remarkable reduction of the economic impact of the proposed battery. Furthermore, the high energy of the Li-S cell and safety of the polymer configuration represent additional bonuses of the system. The S-C material, revealing a maximum capacity as high as 700 mAh g?1 in liquid electrolyte, is employed in a lithium-sulfur battery with the polymer configuration. The polymer cell delivers a capacity of 450 mAh g?1 at a voltage of about 2 V; hence, a theoretical energy density of 900 Wh kg?1 that may reflect into a high practical value, suitable for energy storage applications.  相似文献   

16.
A series of polymer electrolyte based on poly(vinyl alcohol), lithium perchlorate (LiClO4), and antimony trioxide (Sb2O3) was prepared via solution casting technique with distilled water as solvent. The dielectric behavior study reveals the non-Debye properties of the polymer electrolytes. In frequency dependence conductivity measurement, dispersion at low frequency was due to the interfacial resistance and space charge polarization inside the polymer electrolytes. The linear sweep voltammetry has proven that the incorporation of Sb2O3 into polymer matrix increases the maximum operational potential region. Electric double-layer capacitors (EDLCs) based on activated carbon electrode assembled with solid polymer electrolyte and composite polymer electrolyte has been evaluated by cyclic voltammetry (CV) and galvanostatic charge–discharge technique. CV test disclosed rectangular shapes with slight distortion, and there is no evidence for any redox currents on both anodic and cathodic sweeps, which indicates the typical behavior of EDLC. Both EDLC cells demonstrate good cyclability throughout 200 cycles with specific capacitance retention more than 90 %.  相似文献   

17.
《Current Applied Physics》2018,18(6):619-625
Blend polymer composite gel electrolytesare prepared using thepoly vinyledene fluoride (PVDF), polymethyl methacrylate (PMMA) with alumina (Al2O3) in variance of alkali metal iodide saltsystem. The alumina doped blend polymer electrolytes characterized by the XRD diffraction and FT-IR spectra. This is supportive to the conformation of the crystallinity behaviour and the composite formation.The high-resolution scanning electron microscopy (HR-SEM) have used to find the composite electrolyte membrane porous size (10 μm) and it has support to understand the morphological structure of the membrane. To analyze the ionic conductivity of the potassium iodide based composite polymer electrolyte by the impedance measurements, which is 4.62 × 10−3 Scm−1 at room temperature. Finally, different alkali metal iodide based dye-sensitized solar cells (DSSCs) fabricated and monitored an energy conversion efficiency.  相似文献   

18.
Microwave absorption properties of composite powders with low density   总被引:1,自引:0,他引:1  
The composites of barium ferrite coated on hollow ceramic microspheres were prepared using sol-gel technique. The crystal structure, morphology and microwave absorption properties of composite powders with different weight ratio of microspheres were studied with XRD, EDS, FESEM and vector network analyzer. The results show that the microwave absorption properties of composite powders are greatly improved. The maximum microwave loss of composite powders reaches 31 dB with an amount of 50 wt.% microspheres, and its density is only about 1.80 g/cm3. The effect of hollow ceramic microspheres on the microwave absorption property is also discussed.  相似文献   

19.
A novel optical limiting coordination polymer with ladder-like framework   总被引:1,自引:0,他引:1  
The optical limiting (OL) properties of a novel coordination polymer {[Et4N][Ag2I3]}n with a ladder-like framework were investigated using 532-nm nanosecond laser pulses. The coordination polymer in dimethylformamide solution exhibits better OL performance than C60 in toluene. The results were discussed using a phenomenological model based on excited-state nonlinear absorption. PACS 42.70.Mp; 42.65.-k; 42.70.Hj; 36.20.Hb  相似文献   

20.
A plasticized composite polymer electrolyte (PCPE) based on Poly (ethylene oxide) + NaI with Na2SiO3 as the ceramics filler and Poly (ethylene glycol) as the plasticizer has been prepared by solution cast technique. Effect of plasticization on microstrucutre and electrical properties of the materials has been investigated. The changes in the structural and microstructural properties of the material have been investigated by XRD and SEM studies. The electrical conductivity estimated using a. c. impedance spectroscopy was found to be dependent on plasticizer concentration. An enhancement in the ionic conductivity value by three times has been recorded on addition of plasticizer when compared with that of unplasticized composite polymer electrolyte. The temperature dependence of conductivity of the polymer films is found to obey the Arrhenius behavior below and above the melting temperature of PEO. The electrical transport has been found to be a thermally activated process with ions being the predominant charge carrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号