首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the growth and properties of titanyl phthalocyanine (TiOPc) thin films made by supersonic molecular beam epitaxy (SuMBE). Interesting differences in the growth properties on amorphous (quartz) and crystalline (mica) substrates were found, indicating that SuMBE gives rise to an epitaxy of disc-like organic molecules on crystalline substrates. The combined control of the kinetic energy of the molecules in the supersonic beam specific to SuMBE and of the substrate temperature during deposition are the key parameters used to determine the final properties of the films. We show that SuMBE is a well-suited epitaxy method for the deposition of relatively large organic molecules, leading to layers of thin organic (single-)crystals with lateral dimensions in the micrometer range. By SuMBE we can control the growth of different polymorphs of TiOPc. We found and studied two ways to produce films of red and infrared absorbing phase II TiOPc, which is of interest for applications in organic solar cells.  相似文献   

2.
ZnS films have been deposited on glass substrates by close-spaced evaporation (CSE) technique. The films were grown at different temperatures in the range, 200-350 °C. The layers have been characterized with X-ray diffractometer (XRD), atomic force microscope (AFM), energy dispersive analysis of X-rays (EDAX) and optical spectrophotometer to evaluate the quality of the layers for photovoltaic applications. The studies showed that the optimum substrate temperature for the growth of ZnS layers was 300 °C. The films grown at these temperatures exhibited cubic structure with nearly stoichiometric composition. The AFM data revealed that the films had nano-sized grains with a grain size of ∼40 nm. The optical studies exhibited direct allowed transition with an energy band gap of 3.61 eV. The other structural and optical parameters such as lattice stress, dislocation density, refractive index and extinction coefficient were also evaluated. The temperature-dependent conductivity measured in the range, 303-523 K showed a change in the conduction mechanism at 120 °C. The activation energy values evaluated using the temperature dependence of electrical conductivity are 7 and 29 meV at low and high temperature regions, respectively.  相似文献   

3.
Zinc oxide (ZnO) films have been grown on sapphire by molecular beam epitaxy (MBE), and it is found that the grain size of the ZnO films increased with increasing the growth temperature. Photoluminescence (PL) study shows that the intensity ratio of near-band-edge emission to deep-level-related emission (NBE/DL) of the ZnO is significantly enhanced with increasing the growth temperature, and the dependence of the carrier mobility on the growth temperature shows very similar trend, which implies that there is a community factor that determines the optical and electrical properties of ZnO, and this factor is suggested to be the grain boundary. The results obtained in this paper reveal that by reducing the grain boundaries, ZnO films with high optical and electrical properties may be acquired.  相似文献   

4.
路忠林  邹文琴  徐明祥  张凤鸣 《中国物理 B》2010,19(7):76101-076101
C-oriented ZnO epitaxial thin films are grown separately on the a-plane and c-plane sapphire substrates by using a molecular-beam epitaxy technique. In contrast to single crystalline ZnO films grown on a-plane sapphire, the films grown on c-plane sapphire are found to be bi-crystalline; some domains have a 30o rotation to reduce the large mismatch between the film and the substrate. The presence of these rotation domains in the bi-crystalline ZnO thin film causes much more carrier scatterings at the boundaries, leading to much lower mobility and smaller mean free path of the mobile carriers than those of the single crystalline one. In addition, the complex impedance spectra are also studied to identify relaxation mechanisms due to the domains and/or domain boundaries in both the single crystalline and bi-crystalline ZnO thin films.  相似文献   

5.
Nanocrystalline ZnO thin films were grown by means of pulsed laser deposition. The ablation process was carried out at relatively low background oxygen gas pressure (10 Pa) and by varying the substrate temperature up to 600 °C. Information on the structural and morphological properties of the deposited thin films have been obtained by means of X-ray photoelectron, Raman spectroscopies, X-ray diffraction (XRD) and atomic force microscopy (AFM). The results showed that all the deposited films are sub-stoichiometric in oxygen and with a hexagonal wurtzite crystalline structure, characterized by features of some tens of nanometers in size. An improvement of the films' crystalline quality was observed for the deposition temperature of 300 °C while the further increase of the deposition temperature up to 600 °C induces a worsening of the material's structural properties with the development of a large amount of nanoparticle's clusters. The analysis of the XRD patterns shows a growth crystallographic preferential direction as a function of the deposition temperature, in agreement with the appearance of the only E2 optical phonon mode in the Raman spectra. Such findings are compatible with the changes observed in the photoluminescent (PL) optical response and was related to the modification of the ZnO thin film structural quality.  相似文献   

6.
The strain-relaxation phenomena and the formation of a dislocation network in 2H-InN epilayers during molecular beam epitaxy are reported. The proposed growth model emphasizes the dominant role of the coalescence process in the formation of a dislocation network in 2H-InN. Edge type threading dislocations and dislocations of mixed character have been found to be the dominating defects in wurtzite InN layers. It is demonstrated that these dislocations are active suppliers of electrons and an exponential decay of their density with the thickness implies a corresponding decay in the carrier density. Room temperature mobility in excess of 1500 cm2 V −1 s−1 was obtained for 800 nm thick InN layers with dislocation densities of 3×109 cm−2.  相似文献   

7.
B. Liu  J. Gao  K.M. Wu  C. Liu 《Solid State Communications》2009,149(17-18):715-717
AlN films were grown at 785 °C on (0001) sapphire substrates by radio-frequency assisted molecular beam epitaxy. Post-growth rapid thermal annealing (RTA) was carried out from 900 to 1200 °C for 10 s in flowing N2. The morphological and structural properties of the AlN epilayers before and after the RTA were studied by atomic force microscopy, x-ray diffraction and transmission electron microscopy. It is found that the threading dislocations can be decreased to an order of magnitude by using an interlayer growth method. The surface roughness (RMS) of the AlN thin films becomes larger with the increase of annealing temperature. The full width at half maximum of AlN (0002) rocking curve reaches its minimum after the RTA at 1000 °C.  相似文献   

8.
A series of ZnO films were prepared on the Si (1 0 0) or glass substrate at 773 K under various oxygen pressures by using a laser molecular beam epitaxy system. The microstructure and optical properties were investigated through the X-ray diffraction, Raman spectrometer, scanning electron microscope, ultraviolet–visible spectrophotometer and spectrofluorophotometer. The results showed that ZnO thin film prepared at 1 Pa oxygen pressure displayed the best crystalinity and all ZnO films formed a columnar structure. Meanwhile, all ZnO films exhibited an abrupt absorption edge near the wavelength of 380 nm in transmission spectra. With increasing the oxygen pressure, the transmission intensity changed non-monotonically and reached a maximum of above 80% at 1 Pa oxygen pressure, based on which the band gaps of all ZnO films were calculated to be about 3.259–3.315 eV. Photoluminescence spectra indicated that there occurred no emission peak at a low oxygen pressure of 10−5 Pa. With the increment of the oxygen pressure, there occurred a UV emission peak of 378 nm, a weak violet emission peak of 405 nm and a wide green emission band centered at 520 nm. As the oxygen pressure increased further, the position of UV emission peak remained and its intensity changed non-monotonically and reached a maximum at 1 Pa. Meanwhile the intensity of green emission band increased monotonically with increasing the oxygen pressure. In addition, it was also found that the intensity of UV emission peak decreased as the measuring temperature shifted from 80 to 300 K. The analyses indicated that the UV emission peak originated from the combination of free excitons and the green emission band originated from the energy level jump from conduction band to OZn defect.  相似文献   

9.
 采用激光分子束外延方法,以烧结α-Fe2O3/为靶材,在MgO(100)基底上制备了Fe3O4薄膜。通过反射高能电子衍射原位观察了薄膜生长前后的表面结构,结果表明所生长的Fe3O4薄膜表面平整。经显微激光拉曼光谱和X光电子能谱分析证实所得薄膜表面成分为纯相Fe3O4。磁电学性能采用多功能物性系统测量,结果表明:当温度降至100 K附近时,薄膜电阻率有较大增加,Verwey相转变的范围变宽而且不明显,说明反向晶粒边界的存在;在7 160 kA·m-1的磁场下,室温磁电阻达到-6.9%,在80和150 K温度下磁电阻分别达到-10.5%和-16.1%;薄膜的室温饱和磁化强度约为260 kA·m-1,其矫顽磁场约为202 kA·m-1。  相似文献   

10.
AlN is an interesting material with some excellent properties like high hardness (>11 GPa), high temperature stability (>2400 °C), good electrical resistivity (>1010 Ω cm), and good thermal conductivity (>100 W/m K). These properties make it useful in the field of photo voltaic systems. Cooling of solar cells in solar concentrator application is of major concern because high temperature reduces their efficiency. In the present work we deposited AlN coating, with and without an Al interlayer, on various substrates like Si, quartz, and copper using RF magnetron sputtering. Deposition conditions such as Al interlayer (deposition time = 5-20 min), Ar:N2 ratio (N2% = 0-75%) and substrate bias (0 and −50 V) were changed in order to study their effect on coating properties. Coating surface roughness increased from 0.05 to 0.15 μm with increase in Al interlayer thickness. The coating thickness decreased from 4.4 to 3.1 μm with increase in N2 gas % and films grew in (0 0 2) orientation. Films deposited on copper using Al interlayer showed good electrical resistance of ∼1013 Ω. Films deposited on copper without Al interlayer showed presence of voids or micro cracks and poor electrical properties. AlN films deposited at −50 V bias show cracking and delamination.  相似文献   

11.
ZnO thin films with typical c-axis (0 0 2) orientation were successfully deposited on quartz glass substrates by pulse laser ablation of Zn target in oxygen atmosphere at a relatively low temperature range of 100-250 °C. The structural and optical properties of the films were studied. In photoluminescence (PL) spectra at room temperature, single ultraviolet emission (without deep-level emission) was obtained from ZnO film deposited at the temperature of 200 °C. This was attributed to its low intrinsic defects.  相似文献   

12.
Hall effect, DLTS and low-temperature photoluminescence measurements were used to study the effect of dimeric (As2) vs tetrameric (As4) vapour species on the electrical and optical properties of nominally undoped and of Ge-doped GaAs layers grown by molecular beam epitaxy (MBE). The arsenic molecular beam was generated from separate As2 and As4 sources, respectively, and from a single source providing an adjustable As2/As4 flux ratio. The occurence of the previously described defect related bound exciton lines in the luminescence spectra at 1.504–1.511 eV was found to be directly correlated with the presence of three deep states (M1, M3, M4) which are characteristic of MBE grown GaAs. The intensity of the extra luminescence lines and simultaneously the concentration of the deep electron traps can be reduced substantially simply by decreasing the As4/As2 flux ratio. The incorporation of defect related centers as well as of amphoteric dopants like Ge strongly depends on the surface chemistry involved. Therefore, a considerably lower autocompensation ratio in Ge-dopedn-GaAs is obtained with As2 molecular beam species which provide a higher steady-state arsenic surface population.  相似文献   

13.
采用近距离升华技术制备了掺杂Cd元素的CdTe多晶薄膜.利用X射线衍射仪和扫描电子显微镜表征其微结构,用霍尔效应测试仪和紫外可见分光光度计分析其电学、光学特性.结果显示,适量的掺杂Cd元素可改善CdTe薄膜晶形,显著提高薄膜的电导特性,由弱的p型电导转变为导电性能良好的n型电导,但对光能隙影响不大. 关键词: 近距离升华 CdTe薄膜 掺杂Cd 电学和光学特性  相似文献   

14.
We present thick, uniform and rather flat melanin films obtained using spray deposition. The morphology of the films was investigated using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Temperature-dependent electrical resistance of melanin thin films evidenced a semiconductor-like character and a hysteretic behavior linked to an irreversible process of water molecule desorption from the melanin film. X-ray Photoelectron Spectroscopy (XPS) was carried out to analyze the role of the functional groups in the primary and secondary structure of the macromolecule, showing that the contribution of the 5,6-dihydroxyindole-2-carboxylic acid (DHICA) subunit to the molecule is about 35%. Comparison of the optical absorption of the thick (800nm) and thin (80nm) films showed a spectral change when the thickness increases. From in vacuum photoconductivity (PC) measured at controlled temperatures, we suggest that the melanin films exhibit a possible charge transport mechanism by means of delocalized states along the stacked planar secondary structure.  相似文献   

15.
《Current Applied Physics》2010,10(3):880-885
In the present work the influence of annealing temperature on the structural and optical properties of the In2O3 films deposited by electron beam evaporation technique in the presence of oxygen was studied. The deposited films were annealed from 350 to 550 °C in air. The chemical compositions of In2O3 films were carried out by X-ray photoelectron spectroscopy (XPS). The film structure and surface morphologies were investigated as a function of annealing temperature by X-ray diffraction (XRD) and atomic force microscopy (AFM). The structural studies by XRD reveal that films exhibit preferential orientation along (2 2 2) plane. The refractive index (n), packing density and porosity (%) of films were arrived from transmittance spectral data obtained in the range 250–1000 nm by UV–vis-spectrometer. The optical band gap of In2O3 film was observed and found to be varying from 3.67 to 3.85 eV with the annealing temperature.  相似文献   

16.
Tin oxide (SnO2) thin films have been grown on glass substrates using atmospheric pressure chemical vapour deposition (APCVD) method. During the deposition, the substrate temperature was kept at 400°C–500°C. The structural properties, surface morphology and chemical composition of the deposited film were studied by X-ray diffraction (XRD), scanning electron microscope (SEM) and Rutherford back scattering (RBS) spectrum. XRD pattern showed that the preferred orientation was (110) having tetragonal structure. The optical properties of the films were studied by measuring the transmittance, absorbance and reflectance spectra between λ = 254 nm to 1400 nm and the optical constants were calculated. Typical SnO2 film transmits ∼ 94% of visible light. The electrical properties of the films were studied using four-probe method and Hall-voltage measurement experiment. The films showed room temperature conductivity in the range 1.08 × 102 to 1.69 × 102 Ω−1cm−1.  相似文献   

17.
18.
Amorphous carbon–sulfur (a-C:S) composite films were prepared by vapor phase pyrolysis technique. The structural changes in the a-C:S films were investigated by electron microscopy. A powder X-ray diffraction (XRD) study depicts the two-phase nature of a sulfur-incorporated a-C system. The optical bandgap energy shows a decreasing trend with an increase in the sulfur content and preparation temperature. This infers a sulfur incorporation and pyrolysis temperature induced reduction in structural disorder or increase in sp 2 or π-sites. The presence of sulfur (S 2p) in the a-C:S sample is analyzed by the X-ray photoelectron spectroscopy (XPS). The sp 3/sp 2 hybridization ratio is determined by using the XPS C 1s peak fitting, and the results confirm an increase in sp 2 hybrids with sulfur addition to a-C. The electrical resistivity variation in the films depends on both the sulfur concentration and the pyrolysis temperature.  相似文献   

19.
Indium zinc oxide (IZO) thin films with different percentages of In content (In/[In+Zn]) are synthesized on glass substrates by magnetron sputtering, and the structural, electrical and optical properties of IZO thin films deposited at different In2O3 target powers are investigated. IZO thin films grown at different In2O3 target sputtering powers show evident morphological variation and different grain sizes. As the In2O3 sputtering power rises, the grain size becomes larger and electrical mobility increases. The film grown with an In2O3 target power of 100 W displays the highest electrical mobility of 13.5 cm·V-1·s-1 and the lowest resistivity of 2.4 × 10-3 Ω·cm. The average optical transmittance of the IZO thin film in the visible region reaches 80% and the band gap broadens with the increase of In2O3 target power, which is attributed to the increase in carrier concentration and is in accordance with Burstein-Moss shift theory.  相似文献   

20.
本文采用分子束外延技术,通过对金属分子束的精确控制,在MgO(002)基底上成功生长了GaxN2∶Zn3-x合金薄膜.高分辨率单晶X光衍射仪表征结果表明GaxN2∶Zn3-x合金薄膜仍是以(400)Zn3N2为主导的复合晶体结构,对衍射数据的分析得到该薄膜晶粒尺寸小.用扫描电子显微镜和能谱射线分析仪对其表面和成分做了深入的分析和讨论,在固定的金属流量比的生长环境下,不同厚度的样品在成膜后x均为0.65,化学通式Zn2.35Ga0.65N2.该结果表明Ga元素属于重度掺杂,同时也体现了分子束外延技术在共掺杂技术中的优越性.本文也测量并讨论了Zn2.35Ga0.65N2薄膜的光学性能,实验得到的1.85 eV的光学带隙与理论推算基本吻合,说明Ga的掺入有Ga-N结构...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号