首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A nucleoside with two nucleobases, a so-called double-headed nucleoside, 5'(S)-C-(thymine-1-ylmethyl)thymidine 3, is synthesised and incorporated into oligonucleotides. The additional nucleobase is hereby positioned in the minor groove of the duplexes, which are formed with complementary DNA and RNA-sequences. Slight thermal destabilisation of these duplexes as compared to unmodified duplexes is observed. With other target sequences forming bulged duplexes or three-way junctions, no additional influence of the additional base on the thermal stability is observed. On the other hand, a base-base stacking interaction and subsequent stabilisation is observed when two double-headed nucleotide moieties are positioned in two complementary DNA-sequences forming a DNA-zipper motif.  相似文献   

2.
Oligodeoxynucleotides containing the double-headed nucleoside 5'(S)-C-(2-(thymin-1-yl)ethyl)thymidine were prepared by standard solid phase synthesis. The synthetic building block for incorporating the double-headed moiety was prepared from thymidine, which was stereoselectively converted to a protected 5'(S)-C-hydroxyethyl derivative and used to alkylate the additional thymine by a Mitsunobu reaction. The oligodeoxynucleotides were studied in different nucleic acid secondary structures: duplexes, bulged duplexes, three-way junctions and artificial DNA zipper motifs. The thermal stability of these complexes was studied, demonstrating an almost uniform thermal penalty of incorporating one double-headed nucleoside moiety into a duplex or a bulged duplex, comparable to the effects of the previously reported double-headed nucleoside 5'(S)-C-(thymin-1-yl)methylthymidine. The additional base showed only very small effects when incorporated into DNA or RNA three-way junctions. The various DNA zipper arrangements indicated that extending the linker from methylene to ethylene almost completely removed the selective minor groove base-base stacking interactions observed for the methylene linker in a (-3)-zipper, whereas interactions, although somewhat smaller, were observed for the ethylene linker in a (-4)-zipper motif.  相似文献   

3.
trans-4-Hydroxynonenal (HNE) is a major peroxidation product of omega-6 polyunsaturated fatty acids. The reaction of HNE with DNA gives four diastereomeric 1,N(2)-gamma-hydroxypropano adducts of deoxyguanosine; background levels of these adducts have been detected in animal tissue. Stereospecific syntheses of these four adducts at the nucleoside level have been accomplished. In addition, a versatile strategy for their site-specific incorporation into oligonucleotides has been developed. These adducts are destabilizing as measured by melting temperature when compared to an unadducted strand. The thermal destablization of the adducted 12-mers ranged from 5 to 16 degrees C and is dependent on the absolute stereochemistry of the adduct. The HNE adducts were also examined for their ability to form interstrand DNA-DNA cross-links when incorporated into a CpG sequence. We find that only one of the HNE stereoisomers formed interstrand DNA-DNA cross-links.  相似文献   

4.
Nucleotides that contain two nucleobases (double-headed nucleotides) have the potential to condense the information of two separate nucleotides into one. This presupposes that both bases must successfully pair with a cognate strand. Here, double-headed nucleotides that feature cytosine, guanine, thymine, adenine, hypoxanthine, and diaminopurine linked to the C2′-position of an arabinose scaffold were developed and examined in full detail. These monomeric units were efficiently prepared by convergent synthesis and incorporated into DNA oligonucleotides by means of the automated phosphoramidite method. Their pairing efficiency was assessed by UV-based melting-temperature analysis in several contexts and extensive molecular dynamics studies. Altogether, the results show that these double-headed nucleotides have a well-defined structure and invariably behave as functional dinucleotide mimics in DNA duplexes.  相似文献   

5.
The actual structures of the four stereoisomers of serricornin were examined by the X-ray analysis and high-field pmr spectroscopy. Each of the stereoisomers assumes either or both of two forms, cyclic hemiacetal and acyclic chain, in solution.  相似文献   

6.
In this account, we demonstrate a new methodology for the de novo design of functional oligonucleotides with the acyclic scaffolds threoninol and serinol. Four functional motifs—wedge, interstrand‐wedge, dimer, and cluster—have been prepared from natural DNA or RNA and functional base surrogates prepared from d ‐threoninol. The following applications of these motifs are described: (1) photoregulation of formation and dissociation of a DNA duplex modified with azobenzene, (2) sequence‐specific detection of DNA using a fluorescent probe, (3) formation of fluorophore assemblies that mimic quantum dots, (4) improved strand selectivity of siRNA modified with a base surrogate, and (5) in vivo tracing of the RNAi pathway. Finally, we introduce artificial nucleic acids (XNAs) prepared from d ‐threoninol and serinol functionalized with each of the four nucleobases, which have unique properties compared with other acyclic XNAs. Functional oligonucleotides designed from acyclic scaffolds will be powerful tools for both DNA nanotechnology and biotechnology.  相似文献   

7.
New pyrrolo-dC click adducts (4 and 5) tethered with a 1,2,3-triazole skeleton were synthesized and oligonucleotides were prepared. The triazole system was either directly linked to the pyrrolo moiety (5) or connected via an n-butyl linker (4). The quantum yield of nucleoside 5 (Φ=0.32), which is 10 times higher than those of 8-methylpyrrolo-dC (1?b, Φ=0.026) or the long linker derivative 4 (Φ=0.03), is maintained in oligonucleotides. Compound 5 was used as a nucleobase-discriminating fluorescence sensor in duplex DNA. Excellent mismatch discrimination was observed when 5 was positioned opposite the four canonical nucleosides. Compound 5 has the potential to be used for SNP detection in long DNA targets when conventional techniques such as high resolution melt analysis fail.  相似文献   

8.
The C4'-oxidized abasic site (C4-AP) is produced by a variety of DNA damaging agents. This alkali labile lesion can exist in up to four diastereomeric cyclic forms, in addition to the acyclic keto-aldehyde. Synthetic oligonucleotides containing the lesion were prepared from a stable photochemical precursor. Chemical integrity of the lesion containing oligonucleotides was probed using phosphodiesterase lability. Analysis of the 3',5'-phosphate diester of the monomeric lesion released from single diastereomers of photolabile precursors by 1H NMR indicates that isomerization of the hemiacetal and/or hemiketal is rapid. The syntheses and characterization of oligonucleotides containing configurationally stable analogues of C4-AP, which serve as mechanistic probes for deciphering the structural basis of the biochemical and biological effects of the C4'-oxidized abasic lesion, are also described.  相似文献   

9.
An improved phosphoramidite method is described to prepare oligonucleotides modified with the acyclic, achiral monomers 1. Examination of dimers, prepared on solid support or in solution, showed that phosphortriester dimers containing the allylic unit 1 were unstable towards bases, whereas phosphordiester dimers were stable. Phosphordiester dimers were obtained by replacing cyanoethyl phosphoramidites 2 with phosphoramidites 3, which gave phosphordiesters directly upon oxidation. The phosphordiester dimers were found to be stable towards capping and oxidation, but were somewhat labile towards acids. By reducing the contact time to acids during detritylation it was possible to prepare oligonucleotides containing 4 or 8 modified A, G or T units. The modified oligonucleotides hybridized to complementary DNA and RNA, although with reduced affinity (DeltaT(m) per modification -1 to -5 degrees C).  相似文献   

10.
Substituted 3H-pyrrolo[2,3-d]pyrimidin-2(7H)-one nucleoside analogues have been synthesised from 5-alkynyl-uridine derivatives, incorporated into triplex forming oligonucleotides (TFOs) and found to selectively bind CG inversions with enhanced affinity compared to T.  相似文献   

11.
The design, synthesis, and base-pairing properties of bicyclo[3.2.1]amide-DNA (bca-DNA), a novel phosphodiester-based DNA analogue, are reported. This analogue consists of a conformationally constrained backbone entity, which emulates a B-DNA geometry, to which the nucleo-bases were attached through an extended, acyclic amide linker. Homobasic adenine-containing bca decamers form duplexes with complementary oligonucleotides containing bca, DNA, RNA, and, surprisingly, also L-RNA backbones. UV and CD spectroscopic investigations revealed the duplexes with D- or L-complements to be of similar stability and enantiomorphic in structure. Bca oligonucleotides that contain all four bases form strictly antiparallel, left-handed complementary duplexes with themselves and with complementary DNA, but not with RNA. Base-mismatch discrimination is comparable to that of DNA, while the overall thermal stabilities of bca-oligonucleotide duplexes are inferior to those of DNA or RNA. A detailed molecular modeling study of left- and right-handed bca-DNA-containing duplexes showed only minor changes in the backbone structure and revealed a structural switch around the base-linker unit to be responsible for the generation of enantiomorphic duplex structures. The obtained data are discussed with respect to the structural and energetic role of the ribofuranose entities in DNA and RNA association.  相似文献   

12.
Greco NJ  Tor Y 《Tetrahedron》2007,63(17):3515-3527
The synthesis and photophysical evaluation of modified nucleoside analogues in which a five-membered heterocycle (furan, thiophene, oxazole, and thiazole) is attached to the 5-position of 2′-deoxyuridine are reported. The furan-containing derivative is identified as the most promising responsive nucleoside of this family due to its emission quantum efficiency and degree of sensitivity to its microenvironment. The furan moiety was then attached to the 5-position of 2′-deoxycytidine as well as the 8-position of adenosine and guanosine. Photophysical evaluation of these four furan-containing nucleoside analogues reveals distinct differences in the absorption, emission, and quantum efficiency depending upon the class of nucleoside (pyrimidine or purine). Comparing the photophysical properties of all furan-containing nucleosides, identifies the furan thymidine analogue, 5-(fur-2-yl)-2′-deoxyuridine, as the best candidate for use as a responsive fluorescent probe in nucleic acids. 5-(Fur-2-yl)-2′-deoxyuridine was then converted to the corresponding phosphoramidite and site specifically incorporated into DNA oligonucleotides with greater than 88% coupling efficiency. Such furan-modified oligonucleotides form stable duplexes upon hybridization to their complementary DNA strands and display favorable fluorescent features.  相似文献   

13.
Mori K  Kodama T  Obika S 《Organic letters》2011,13(22):6050-6053
A boat-shaped glucopyranosyl nucleic acid (BsNA) was synthesized to investigate the possibility that the lean of a nucleobase is a factor affecting duplex-forming ability of oligonucleotides. From the crystal structure of a BsNA nucleoside and the thermal stability of duplex oligonucleotides, it was found that not only the lean of the base but also the rotation angle of the glycosidic bond axis were important factors in a stable duplex formation.  相似文献   

14.
The ferrocenyl‐nucleoside, 5‐ethynylferrocenyl‐2′‐deoxycytidine ( 1 ) has been prepared by Pd‐catalyzed cross‐coupling between ethynylferrocene and 5‐iodo‐2′‐deoxycytidine and incorporated into oligonucleotides by using automated solid‐phase synthesis at both silica supports (CPG) and modified single‐crystal silicon electrodes. Analysis of DNA oligonucleotides prepared and cleaved from conventional solid supports confirms that the ferrocenyl‐nucleoside remains intact during synthesis and deprotection and that the resulting strands may be oxidised and reduced in a chemically reversible manner. Melting curve data show that the ferrocenyl‐modified oligonucleotides form duplex structures with native complementary strands. The redox potential of fully solvated ferrocenyl 12‐mers, 350 mV versus SCE, was shifted by +40 mV to a more positive potential upon treatment with the complement contrary to the anticipated negative shift based on a simple electrostatic basis. Automated solid‐phase methods were also used to synthesise 12‐mer ferrocenyl‐containing oligonucleotides directly at chemically modified silicon <111> electrodes. Hybridisation to the surface‐bound ferrocenyl‐DNA caused a shift in the reduction potential of +34 mV to more positive values, indicating that, even when a ferrocenyl nucleoside is contained in a film, the increased density of anions from the phosphate backbone of the complement is still dominated by other factors, for example, the hydrophobic environment of the ferrocene moiety in the duplex or changes in the ferrocene–phosphate distances. The reduction potential is shifted >100 mV after hybridisation when the aqueous electrolyte is replaced by THF/LiClO4, a solvent of much lower dielectric constant; this is consistent with an explanation based on conformation‐induced changes in ferrocene–phosphate distances.  相似文献   

15.
With the aim of evaluating duplex stabilities of oligonucleotides (ONs) with major groove facing functionalities, two novel 2'-O,3'-C-linked bicyclic nucleoside phosphoramidite building blocks were synthesized by routes involving regioselective O-methylation or piperazine attachment using carbonyldiimidazole coupling chemistry. The novel monomers were incorporated into 9-mer mixed base ONs and the thermal stability toward complementary single stranded DNA and RNA was evaluated by thermal denaturation experiments. O-methylated ONs confirmed the applicability of the functionalized bicylic sugar unit for attachment of groups facing the major groove and satisfactory binding properties towards the RNA complement were observed. For the piperazino modified ONs, experiments were performed in aqueous buffers with low (40 mM) and medium (110 mM) salt concentrations, at pH 5 and pH 7. A change from a medium to a low salt concentration induced a significant relative increase in the thermal stability of modified duplexes toward both DNA and RNA complements, which suggests protonation of the piperazino group under the experimental conditions applied.  相似文献   

16.
Perylene-3,4:9,10-tetracarboxylic acid bisimides (PBs) were incorporated synthetically into oligonucleotides by using automated DNA building-block chemistry. The 2'-deoxyribofuranoside of the natural nucleosides was replaced by (S)-aminopropan-2,3-diol as an acyclic linker between the phosphodiester bridges that is tethered to one of the imide nitrogen atoms of the PB dye. The S configuration of this linker was chosen to mimic the stereochemical situation at the 3'-position of the natural 2'-deoxyribofuranosides. By using this strategy, up to six PB dyes were incorporated in the middle of 18-mer DNA duplexes by using interstrand alternating sequences of PBs with thymines or an abasic site analogue. Both PB dimers and PB hexamers as artificial base substitutions inside the duplexes yield characteristic excimer-type fluorescence. The stacking properties of the PB chromophores are modulated by the presence or absence of thymines opposite the PB modification site in the counterstrand. The interstrand PB dimers can be regarded as hydrophobically interacting base pairs, which display a characteristic fluorescence readout signal. Hence, for the PB hexamers, we proposed a zipperlike recognition motif that is formed inside duplex DNA. The PB zipper shows characteristic excimer-type emission as a fluorescence readout signal for the pairing interaction.  相似文献   

17.
A newly derivatized cyclodextrin [octakis-(2,3-diacetyl-6-sulfato)-gamma-cyclodextrin] was investigated as a chiral selector in capillary zone electrophoresis in a study of the chiral separation of labetalol stereoisomers. Heptakis(2,3-diacetyl-6-sulfato)-beta-cyclodextrin (HDAS-beta-CD) and octakis(2,3-diacetyl-6-sulfato)-gamma-cyclodextrin (ODAS-gamma-CD) were shown to be effective in separating labetalol stereoisomers. Optimal separating conditions of the four stereoisomers of labetalol were achieved with 10 mM HDAS-beta-CD and 10 mM ODAS-gamma-CD in an acidic pH buffer of low molarity. Data illustrating the effects of capillary length and cyclodextrin concentration on the separation are presented. The longer capillary length and high voltage enabled the baseline separation of all isomers in less than 15 min. The optimized method was applied to the analysis of human control plasma containing labetalol utilizing solid-phase extraction (SPE) in the 96-well format.  相似文献   

18.
New pyrrolo‐dC click adducts ( 4 and 5 ) tethered with a 1,2,3‐triazole skeleton were synthesized and oligonucleotides were prepared. The triazole system was either directly linked to the pyrrolo moiety ( 5 ) or connected via an n‐butyl linker ( 4 ). The quantum yield of nucleoside 5 (Φ=0.32), which is 10 times higher than those of 8‐methylpyrrolo‐dC ( 1 b , Φ=0.026) or the long linker derivative 4 (Φ=0.03), is maintained in oligonucleotides. Compound 5 was used as a nucleobase‐discriminating fluorescence sensor in duplex DNA. Excellent mismatch discrimination was observed when 5 was positioned opposite the four canonical nucleosides. Compound 5 has the potential to be used for SNP detection in long DNA targets when conventional techniques such as high resolution melt analysis fail.  相似文献   

19.
Pyridopyrimidine reacted with aromatic aldehydes afforded the arylhydrazone 2a,b which could be cyclized into the pyrido[2,3‐d][1,2,4]triazolo[4,3‐a]pyrimidine 3a,b , with formic acid, and carbon disulphide to give pyrido[2,3‐d][1,2,4]traizolo[4,3‐a]pyrimidine 4, 5. Reaction of 1 with nitrous acid afforded tetrazolo[1,5‐a]pyrido[2,3‐d]pyrimidine 6 , which was reduced by zinc dust to give 2‐amino‐pyrido‐[2,3‐d]pyrimidine 7. Finally the reaction of 2‐hydrazino 1 with D‐xylose or D‐glucose afforded the acyclic N‐nucleoside 8, 11 which were converted into tetra/penta O‐acetate acyclic C‐nucleoside 9, 12 in acetic anhydride/pyridine. De‐acetylation of compounds 9, 12 afforded C‐nucleosides 10, 13.  相似文献   

20.
To synthesize oligonucleotides containing 2'-O-phosphate groups, four kinds of ribonucleoside 3'-phosphoramidite building blocks 6a-d having the bis(2-cyano-1,1-dimethylethoxy)thiophosphoryl (BCMETP) group were prepared according to our previous phosphorylation procedure. These phosphoramidite units 6a-d were not contaminated with 3'-regioisomers and were successfully applied to solid-phase synthesis to give oligodeoxyuridylates 15, 16 and oligouridylates 21, 22. Self-complementary Drew-Dickerson DNA 12mers 24-28 replaced by a 2'-O-phosphorylated ribonucleotide at various positions were similarly synthesized. In these syntheses, it turned out that KI(3) was the most effective reagent for oxidative desulfurization of the initially generated thiophosphate group to the phosphate group on polymer supports. Without using this conversion step, a tridecadeoxyuridylate 17 incorporating a 2'-O-thiophosphorylated uridine derivative was also synthesized. To investigate the effect of the 2'-phosphate group on the thermal stability and 3D-structure of DNA(RNA) duplexes, T(m) measurement of the self-complementary oligonucleotides obtained and MD simulation of heptamer duplexes 33-36 were carried out. According to these analyses, it was suggested that the nucleoside ribose moiety phosphorylated at the 2'-hydroxyl function predominantly preferred C2'-endo to C3'-endo conformation in DNA duplexes so that it did not significantly affect the stability of the DNA duplex. On the other hand, the 2'-modified ribose moiety was expelled to give a C3'-endo conformation in RNA duplexes so that the RNA duplexes were extremely destabilized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号