首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
4H-SiC-oxide interfaces formed by various oxidation methods on SiC (0 0 0 1) Si- and () C-face substrates have been characterized by performing spectroscopic ellipsometry in wide spectral region including deep UV spectral range and capacitance-voltage measurements. The results exhibit that the refractive indices of the interface layers well correlate with interface state density in all the cases of oxidation processes. To investigate the difference in interface characteristics between wet and dry oxidation, we compared to the sample fabricated by wet oxidation followed by heating in Ar or O2 atmosphere, aiming to remove hydrogen related species at the interface. We also tried to make clear the difference in the interface characteristics between Si- and C-faces by lowering the oxidation rate of C-face down to those for Si-face. Putting together with all of the results obtained, we discuss the origins that determine the interface characteristics in terms of both the optical and electrical characterizations.  相似文献   

2.
High-κ dielectrics SrZrO3 were prepared on Ge(0 0 1) substrate using pulse laser deposition, and band alignments and thermal annealing effects were studied with high resolution X-ray photoemission spectroscopy. Valence and conduction band offsets at this interface were measured to be 3.26 eV and 1.77 eV, respectively. Interfacial Ge oxide layers were found at the interface. After annealing at 600 °C, the interfacial Ge oxide layers were eliminated, and the valence band offset increased to 3.50 eV, but the amorphous SrZrO3 became polycrystalline in the meantime.  相似文献   

3.
Spherical aggregates of SiC nanocrystallites can be grown in addition to SiC nanowires via metal organic chemical vapor deposition using methylvinyldichlorosilane as a source gas and Ni catalyst by controlling the growth temperature and the pressure of the source gas. Electron microscopy observations show that the aggregates are typically 300 nm in diameter, which consist of SiC nanocrystallites of about 5 nm in diameter. Electron diffraction reveals that the nanocrystallites have the 3C structure.  相似文献   

4.
X-ray reflectivity and non-specular crystal truncation rod scans have been used to determine the three-dimensional atomic structure of the buried CaF2-Si(1 1 1) interface and ultrathin films of MnF2 and CaF2 within a superlattice. We show that ultrathin films of MnF2, below a critical thickness of approximately four monolayers, are crystalline, pseudomorphic, and adopt the fluorite structure of CaF2. High temperature deposition of the CaF2 buffer layer produces a fully reacted, CaF2-Si(1 1 1) type-B interface. The mature, “long” interface is shown to consist of a partially occupied layer of CaF bonded to the Si substrate, followed by a distorted CaF layer. Our atomistic, semi-kinematical scattering method extends the slab reflectivity method by providing in-plane structural information.  相似文献   

5.
We study the Josephson effect in the superconductor/diffusive half metal/superconductor junctions by using the recursive Green function method. In the presence of spin-flip scatterings at the interface, odd-frequency spin-triplet Cooper pairs penetrate deeply into a half metal and carry Josephson current. The critical Josephson current increases with decreasing temperatures near the transition temperature. At low temperatures, however, the critical current decreases with decreasing temperatures. Such reentrant behavior is unusual in the case of s-wave superconductor junctions. The penetration of odd-frequency pairs modifies quasiparticle density of states in a half metal near the Fermi energy, which is responsible for the nonmonotonic temperature dependence of critical Josephson current.  相似文献   

6.
The formation of free-standing gold nanosieves by ablation with ultra-short laser pulses is demonstrated. Macroscopic areas are generated fast and efficiently by the application of a parallel production technique. The technique is based on a lens array formed by self-assembling quartz microspheres on a thin metal foil. The evaporated foils have a final thickness of 400 nm, and the hole spacing is set by the diameter of the microspheres (∼7 m) while the pore size is ∼700 nm. The characteristic spacing of the generated hole structure is verified by an optical diffraction technique.  相似文献   

7.
Self-organized magnetic nanoparticles are obtained through selective silicidation of cobalt using a silicon substrate pre-structured with tri-dimensional gold islands as template. On the step bunches array of a vicinal Si(1 1 1) surface, gold deposition results in the formation of nanodroplets aligned along the step bunches. A subsequent cobalt deposition is performed onto this gold islands-covered Si surface, with two silicidation processes investigated: reactive deposition (RD) and solid phase reaction (SPR). The cobalt is converted into a non-magnetic silicide film except where the surface is locally masked by the gold islands, giving rise to cobalt nanomagnets which can be capped by a gold layer. A scanning tunneling microscopy comparative study of RD and SPR processes demonstrates that the former induces strong surface morphology changes while the latter preserves the pristine islands. Magnetic measurements performed with alternating gradient force magnetometry at room temperature are used to demonstrate the presence of ferromagnetic cobalt nanoparticles on SPR-processed samples. These nanomagnets show a clear in-plane anisotropy behavior.  相似文献   

8.
Monte Carlo simulation has been used to study the magnetic properties and hysteresis loops of a single nanocube, consisting of a ferromagnetic core of spin- surrounded by a ferromagnetic shell of spin-1 with antiferromagnetic interface coupling. We find a number of characteristic phenomena. In particular, the effects of the shell coupling and the interface coupling on both the compensation temperature and the magnetization profiles are investigated. The effects of the interface coupling on the hysteresis loops are also examined.  相似文献   

9.
The magnetic anisotropy of epitaxial Fe films with thicknesses in the range of 2-142 monolayers (ML) grown on {4×2} reconstructed InAs(0 0 1) was investigated by in situ ferromagnetic resonance. The easy magnetization direction was found to be parallel to the -direction for Fe films below 4 ML, while it rotates by 45° toward the -direction. It is observed that both surface-interface and volume contribution to the perpendicular anisotropy favor an easy axis perpendicular to the film plane. The cubic surface-interface anisotropy is relatively large with easy axes along -directions in contrast to the volume contribution which favors easy axes along the -directions. The volume contribution is found to be larger than the Fe bulk cubic anisotropy. A thickness independent uniaxial anisotropy has been found in films with a thickness of 2 up to 142 ML.  相似文献   

10.
A method for characterization of sub-nanometer thick Co/V and Co/Mo interfaces is proposed that uses magneto-optical ellipsometry. Both the polar Kerr rotation and ellipticity are fitted simultaneously to different models of interface layer. The magneto-optical data are measured for varying thicknesses of the cobalt layer and overlayer by scanning of a laser beam over the samples with two orthogonal wedges. Decrease of magneto-optical effect at both interfaces Co/V and Co/Mo were observed, which corresponds to interface layers of thicknesses ranging from one to two monoatomic layers. In the case of vanadium, the interface layer is sharper and can be explained either by reduced magnetic moment of cobalt, or by anti-parallel magnetic moment of vanadium near the Co/V interface.  相似文献   

11.
Using the quasiclassical Green's function formalism, we study the induced odd-frequency pairing states in ballistic normal metal-superconductor (N/S) junctions where a superconductor has even-frequency symmetry in the bulk and a normal metal layer has an arbitrary length. We show that the concept of the odd-frequency pairing state plays an important role to interpret a McMillan-Rowell bound state in the normal metal.  相似文献   

12.
We use an accurate full-potential density-functional method to systematically study MnTe-based quaternary magnetic compounds: Mn6ZnAlTe8, Mn6ZnGaTe8, Mn6CdAlTe8, and Mn6CdGaTe8. The co-substitution of group-II and group-III atoms for a quarter of Mn atoms changes the antiferromagnetic MnTe semiconductor into ferrimagnetic (FM) metal because the extra electron, introduced by the trivalent atom, as effective carrier makes Mn spins within nonmagnetic substitutional layers orient uniformly. Quite high spin polarization can be achieved for the electrons at the Fermi level in the co-substituted structures. This could make a novel approach to promising FM materials. The quaternary metallic ferrimagnets could have potential applications for spintronic devices.  相似文献   

13.
Density functional theory and the generalized gradient approximation with correction for Hubbard energy was used to study the behavior of cobaltous oxide (CoO) under pressure. CoO undergoes an insulator-metal transition which is accompanied by a magnetic collapse. The antiferromagnetic phase of CoO transforms to nonmagnetic phase with the 6-7% reduction in the fractional volume. The magnetic collapse and the energy band gap closure are driven by the lost of correlation which results from the delocalization of 3d electrons. Delocalization process is due to the band broadening with compression. The Hubbard energy influences the transitions pressure. The lower Hubbard terms result in the lower values of transition pressure. The evolution of magnetic moment, energy band gap, and the bandwidth versus increasing pressure is analyzed. The results of calculations are compared to the existing theoretical and experimental data.  相似文献   

14.
Diamond-like carbon (DLC) films were deposited on Si(1 0 0) substrates using plasma deposition technique. The deposited films were irradiated using 2 MeV N+ ions at fluences of 1×1014, 1×1015 and 5×1015 ions/cm2. Samples have been characterized by using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM). Analysis of Raman spectra shows a gradual shift of both D and G band peaks towards higher frequencies along with an increase of the intensity ratio, I(D)/I(G), with increasing ion fluence in irradiation. These results are consistent with an increase of sp2 bonding. XPS results also show a monotonic increase of sp2/sp3 hybridization ratio with increasing ion fluence. Plan view TEM images show the formation of clusters in the irradiated DLC films. HRTEM micrographs from the samples irradiated at a fluence of 5×1015 ions/cm2 show the lattice image with an average interplanar spacing of 0.34 nm, revealing that the clusters are graphite clusters. The crystallographic planes in these clusters are somewhat distorted compared to the perfect graphite structure.  相似文献   

15.
In this study, a phase-change memory device was fabricated and the origin of device failure mode was examined using transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). Ge2Sb2Te5 (GST) was used as the active phase-change material in the memory device and the active pore size was designed to be 0.5 m. After the programming signals of more than 2×106 cycles were repeatedly applied to the device, the high-resistance memory state (reset) could not be rewritten and the cell resistance was fixed at the low-resistance state (set). Based on TEM and EDS studies, Sb excess and Ge deficiency in the device operating region had a strong effect on device reliability, especially under endurance-demanding conditions. An abnormal segregation and oxidation of Ge also was observed in the region between the device operating and inactive peripheral regions. To guarantee an data endurability of more than 1×1010 cycles of PRAM, it is very important to develop phase-change materials with more stable compositions and to reduce the current required for programming.  相似文献   

16.
The thickness-dependent electronic structures of Dy silicide films grown on a Si(1 1 1) surface have been investigated by angle-resolved photoelectron spectroscopy. Two (1×1) periodic bands, both of them cross the Fermi level, have been observed in the silicide films formed by Dy coverages of 1.0 monolayer and below, and more than five () periodic bands have been observed in thicker films. Taking the () periodic structure of Dy atoms in the submonolayer silicide film into account, the periodicity of the two metallic bands indicate that they mainly originate from the orbitals of Si atoms, which form a (1×1) structure. Of the () periodic bands observed in thick films, four of them are well explained by the folding of the (1×1) bands into a () periodicity. Regarding the other band, the three () periodic bands would originate from the electronic states related to the inner Si layers that form a () structure, and the one observed in the 3.0 ML film only might originate from the electron located at the interface between bulk Si and the Dy silicide film.  相似文献   

17.
Electron instabilities in the Hubbard model with the next nearest neighbor coupling are calculated by exact diagonalization in finite, two-dimensional Betts cells (lattices). A viable spin and charge coherent pairing, signaled by quantum critical points and a negative charge gap region, is found in 8- and 10-site Betts lattices at small and moderate U regions consistent with our exact results in elementary bipartite geometries [Phys. Rev. B 78 (2008) 075431]. The contour isolines for continuous temperature driven-crossover between the Mott-Hubbard insulating and coherent pairing phases are demonstrated. The criteria for smooth and abrupt phase transitions are found for systematic enhancement of coherent pairing by optimization of the next nearest neighbor coupling parameter.  相似文献   

18.
A proximity effect in an s-wave superconductor/ferromagnet (SC/F) junction is theoretically studied using the second order perturbation theory for the tunneling Hamiltonian and Green's function method. We calculate a pair amplitude induced by the proximity effect in a weak ferromagnetic metal (FM) and a half-metal (HM). In the SC/FM junction, it is found that a spin-singlet pair amplitude (Ψs) and spin-triplet pair amplitude (Ψt) are induced in FM and both amplitudes depend on the frequency in the Matsubara representation. Ψs is an even function and Ψt is an odd function with respect to the Matsubara frequency (ωn). In the SC/HM junction, we examine the proximity effects by taking account of magnon excitations in HM. It is found that the triplet-pair correlation is induced in HM. The induced pair amplitude in HM shows a damped oscillation as a function of the position and contains the terms of even and odd functions of ωn as in the case of the SC/FM junction. We discuss that in our tunneling model the pair amplitude of even function of ωn only contributes to a Josephson current.  相似文献   

19.
Using a general expression for dc Josephson current, we study the Josephson effect in ballistic superconductor (SC)/ferromagnetic semiconductor (FS)/SC junctions, in which the mismatches of the effective mass and Fermi velocity between the FS and SC, spin polarization P in the FS, as well as strengths of potential scattering Z at the interfaces are included. It is shown that in the coherent regime, the oscillatory dependences of the maximum Josephson current on the FS layer thickness L and Josephson current on the macroscopic phase difference φ for the heavy and light holes, resulting from the spin splitting energy gained or lost by a quasiparticle Andreev-reflected at the FS/SC interface, are much different due to the different mismatches in the effective mass and Fermi velocity between the FS and the SC, which is related to the crossovers between positive (0) and negative (π) couplings or equivalently 0 and π junctions. Also, we find that, for the same reason, Z and P are required not to surpass different critical values for the Josephson currents of the heavy and light holes. Furthermore, it is found that, for the dependence of the Josephson current on φ, regardless of how L,Z, and P change, the Josephson junctions do not transit between 0 and π junctions for the light hole.  相似文献   

20.
The properties of Ising square lattices with nearest neighbor ferromagnetic exchange confined in a corner geometry, are studied by means of Monte Carlo simulations. Free boundary conditions at which boundary magnetic fields ±h are applied, i.e., at the two boundary rows ending at the lower left corner a field +h acts, while at the two boundary rows ending at the upper right corner a field −h acts. For temperatures T less than the critical temperature Tc of the bulk, this boundary condition leads to the formation of two domains with opposite orientation of the magnetization direction, separated by an interface which for T larger than the filling transition temperature Tf(h) runs from the upper left corner to the lower right corner, while for T<Tf(h) this interface is localized either close to the lower left corner or close to the upper right corner. It is shown that for T=Tf(h) the magnetization profile m(z) in the z-direction normal to the interface simply is linear and the interfacial width scales as wL, while for T>Tf(h) it scales as . The distribution P(?) of the interface position ? (measured along the z-direction from the corners) decays exponentially for T<Tf(h) from either corner, is essentially flat for T=Tf(h), and is a Gaussian centered at the middle of the diagonal for T>Tf(h). Unlike the findings for critical wetting in the thin film geometry of the Ising model, the Monte Carlo results for corner wetting are in very good agreement with the theoretical predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号