首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We propose an off-line delayed-start LPT algorithm that sequences the first (longest) 5 jobs optimally and the remaining jobs according to the LPT principle on two identical parallel machines. We show that this algorithm has a sharper tight worst-case ratio bound than the traditional LPT algorithm for the sum of squares of machine completion times minimization problem.  相似文献   

3.
The problem of minmax absolute scheduling-location is investigated on trees with interval edge length. Jobs are located at vertices and must travel to the machine. The goal is to find a machine location and simultaneously a schedule to minimize the maximum lateness in the worst-case. We derive a result that could reduce the robust versions to deterministic problems. An efficient algorithm is developed to solve special cases. A 2-approximation algorithm is proposed for the robust problem on the underlying tree.  相似文献   

4.
Given an arc-capacitated digraph and k terminal vertices, the directed maximum integer multiterminal flow problem is to route the maximum number of flow units between the terminals. We introduce a new parameter kL?k for this problem and study its complexity with respect to kL.  相似文献   

5.
We show that the firefighter problem is NP-complete for trees of maximum degree three, but in P for graphs of maximum degree three if the fire breaks out at a vertex of degree at most two.  相似文献   

6.
We deal with MAXH0-FREE PARTIAL SUBGRAPH. We mainly prove that 3-locally optimum solutions achieve approximation ratio (δ0+1)/(B+2+ν0), where B=maxvVdG(v), δ0=minvV(H0)dH0(v) and ν0=(|V(H0)|+1)/δ0. Next, we show that this ratio rises up to 3/(B+1) when H0=K3. Finally, we provide hardness results for MAXK3-FREE PARTIAL SUBGRAPH.  相似文献   

7.
Given an undirected graph G=(V,E), an edge cost c(e)?0 for each edge eE, a vertex prize p(v)?0 for each vertex vV, and an edge budget B. The BUDGET PRIZE COLLECTING TREE PROBLEM is to find a subtree T′=(V′,E′) that maximizes , subject to . We present a (4+ε)-approximation algorithm.  相似文献   

8.
9.
We present a polynomial-time approximation algorithm for legally coloring as many edges of a given simple graph as possible using two colors. It achieves an approximation ratio of roughly 0.842 and runs in O(n3m) time, where n (respectively, m) is the number of vertices (respectively, edges) in the input graph. The previously best ratio achieved by a polynomial-time approximation algorithm was .  相似文献   

10.
We consider the 1.52-approximation algorithm of Mahdian et al. for the metric uncapacitated facility location problem. We show that their algorithm does not close the gap with the lower bound on approximability, 1.463, by providing a construction of instances for which its approximation ratio is not better than 1.494.  相似文献   

11.
12.
In this paper, reoptimization versions of the traveling salesman problem (TSP) are addressed. Assume that an optimum solution of an instance is given and the goal is to determine if one can maintain a good solution when the instance is subject to minor modifications. We study the case where nodes are inserted in, or deleted from, the graph. When inserting a node, we show that the reoptimization problem for MinTSP is approximable within ratio 4/3 if the distance matrix is metric. We show that, dealing with metric MaxTSP, a simple heuristic is asymptotically optimum when a constant number of nodes are inserted. In the general case, we propose a 4/5-approximation algorithm for the reoptimization version of MaxTSP.  相似文献   

13.
The maximum clique problem   总被引:2,自引:0,他引:2  
In this paper we present a survey of results concerning algorithms, complexity, and applications of the maximum clique problem. We discuss enumerative and exact algorithms, heuristics, and a variety of other proposed methods. An up to date bibliography on the maximum clique and related problems is also provided.  相似文献   

14.
In this paper we propose a new integer programming formulation for the multilevel facility location problem and a novel 3-approximation algorithm based on LP-rounding. The linear program that we use has a polynomial number of variables and constraints, thus being more efficient than the one commonly used in the approximation algorithms for these types of problems.  相似文献   

15.
16.
The use of a binary counter as a mechanism for VLSI built-in test pattern generation is examined. Four different schemes are studied which are defined as partitioning problems on the rows of a binary matrix T. The goal in all problems is to minimize the maximum distance between the values of the binary patterns of any two rows of T, so that they can be generated by a counter in the minimum number of cycles. Although all schemes are NP-hard, an approximation algorithm is presented for the first scheme which guarantees solutions within 2·p from the optimal, where p is the prescribed number of partitions. The remaining problems are shown to be NP-complete even to be approximated within twice the optimal.  相似文献   

17.
In this paper we investigate a vehicle routing problem motivated by a real-world application in cooperation with the German Automobile Association (ADAC). The general task is to assign service requests to service units and to plan tours for the units such as to minimize the overall cost. The characteristics of this large-scale problem due to the data volume involve strict real-time requirements. We show that the problem of finding a feasible dispatch for service units starting at their current position and serving at most k requests is NP-complete for each fixed k ≥ 2. We also present a polynomial time (2k − 1)-approximation algorithm, where again k denotes the maximal number of requests served by a single service unit. For the boundary case when k equals the total number |E| of requests (and thus there are no limitations on the tour length), we provide a -approximation. Finally, we extend our approximation results to include linear and quadratic lateness costs.  相似文献   

18.
19.
On the complexity of the k-customer vehicle routing problem   总被引:1,自引:0,他引:1  
We investigate the complexity of the k-CUSTOMER VEHICLE ROUTING PROBLEM: Given an edge weighted graph, the problem requires to compute a minimum weight set of cyclic routes such that each contains a distinguished depot vertex and at most other k customer vertices, and every customer belongs to exactly one route.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号