首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
M. Teo 《Applied Surface Science》2005,252(5):1293-1304
A remote microwave-generated H2 plasma and heating to 250 °C were separately used to modify high-purity oxidized aluminum surfaces and to assess whether these treatments can help enhance adhesion with bis-1,2-(triethoxysilyl)ethane (BTSE) coatings. Different initial oxide surfaces were considered, corresponding to the native oxide and to surfaces formed by the Forest Products Laboratory (FPL) treatment applied for either 15 or 60 min. BTSE is applied from solution at pH 4, and competing processes of etching, protonation (to form OH groups) and coupling (to form AlOSi interfacial bonds) occur at the solid-liquid interface. Scanning electron microscopy (SEM) was used to determine how the topographies of the modified Al surfaces changed with the different pre-treatments and with exposure to a buffer solution of pH 4. Secondary-ion mass spectrometry (SIMS) was used to determine the direct amount of AlOSi interfacial bonds by measuring the ratio of peak intensities 71-70 amu, while X-ray photoelectron spectroscopy (XPS) was used to determine the overall strength of the silane coating adhesion by measuring the Si 2p signals before and after application of an ultrasonic rinse to the coated sample. Measured Al 2p and O 1s spectra helped assess how the different pre-treatments modified the various Al oxidized surfaces prior to BTSE coating. Pre-treated samples that showed increased AlOSi bonding after BTSE coating corresponded to surfaces, which did not show evidence of significant etching after exposure to a pH 4 environment. This suggests that such surfaces are more receptive to the coupling reaction during exposure to the BTSE coating solution. These surfaces include all H2 plasma-treated samples, the heated native oxide and the sample that only received the 15 min FPL treatment. In contrast, other surfaces that show evidence of etching in pH 4 environments are samples that received lower amounts of AlOSi interfacial bonding. Overall, heating improved the BTSE adhesive bonding for the native Al oxide, while H2 plasma treatment improved the BTSE bonding for surfaces that had initially been FPL-treated for 15 and 60 min.  相似文献   

2.
We propose a dry method of cleaning Ge(1 0 0) surfaces based on nitrogen plasma treatment. Our in situ Auger electron spectroscopy (AES) and low-energy electron diffraction (LEED) analyses demonstrate that surface contamination remaining after wet treatment was effectively removed by nitrogen radical irradiation at low substrate temperatures. The nitrogen plasma cleaned Ge(1 0 0) surface shows a well-ordered 2 × 1 reconstruction, which indicates the formation of a contamination-free Ge(1 0 0) surface with good crystallinity. We discuss the possible reaction mechanism considering how chemisorbed carbon impurities are removed by selective C-N bond formation and subsequent thermal desorption. These findings imply the advantage of plasma nitridation of Ge surfaces for fabricating nitride gate dielectrics, in which we can expect surface pre-cleaning at the initial stage of the plasma treatment.  相似文献   

3.
Surface immobilization of poly(ethylene glycol) (PEG) is an effective method to produce a material surface with protein repulsive property. This property could be made permanent by using covalent grafting of the PEG molecules onto material surfaces. In this study, self-assembled monolayers (SAMs) of PEG on silicon-containing materials (silicon chip and glassplate) were obtained through a one-step coating procedure of one kind of silanated PEG molecules made through the reaction between monomethoxy PEG and 3-isocyanatopropyltriethoxysilane. Atomic force microscopy (AFM) and water static contact angle measurement were employed to investigate the surface topography and wettability of the PEGylated material surfaces. The changes in the topography and the water contact angle of the surfaces with time of incubation in PBS solution were also measured. The results revealed that stable and uniform self-assembled monolayers of PEG could be formed on silicon or glass surfaces by simply soaking the substrates in the solution of silanated PEGs. The covalent coupling of PEGs to the substrates was also confirmed. In order to evaluate the stability of the SAMs, blood compatibility of the modified glassplate surface was evaluated by measuring full blood activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT), as well as by scanning electron microscopy (SEM) analysis of the appearance of adherence and denaturation of blood platelets onto the glassplate. The silanated PEGs were shown to have good effect on the protein-repulsion as well as haemocompatibility of the substrates.  相似文献   

4.
Laser irradiation at 157 nm of polymethylmethacrylate (PMMA) thin films induces major variations of polymer film thicknesses from sorption (absorption/desorption) of methanol and ethanol analytes in the gas phase as much as 400%, in comparison to the film thickness variation of the non-irradiated areas. The structural changes of irradiated areas involve scission of polymeric chains, cross-linking and formation of new bonds. In addition, 157 nm induces surface and volume morphological changes in the nano/micro domain, with different shapes, depending on the irradiation conditions. The reversibility of the sorption processes suggests that the polymer swelling has its origin at the tendency of the system to increase its volume during sorption. The internal forces from sorption are higher than the weak dipole interactions between the polymer and the analytes and they are amplified following 157 nm irradiation. A simple qualitative model explains adequately the experimental results. 157 nm laser treatment forms the basis to engineer a novel class of polymer sensor arrays with enhanced detection efficiency of liquid/gas analytes.  相似文献   

5.
Oil jet peening is a new surface treatment technique that can be potentially applied to impart compressive residual stresses in metal parts. The effect of oil jet pressure on the surface integrity and texture of metals are discussed. The surface morphology, mass loss rate, indentation, and erosion are reported. With increasing stand-off distance, the size of indents significantly decreases and reduces the average roughness in the both specimens. Results are also compared with other mechanical surface treatment process such as shot peening, laser shock peening, and water jet peening.  相似文献   

6.
Epitaxial Sb-doped SnO2 (0 0 1) thin film on a TiO2 (0 0 1) substrate was successfully prepared by laser-assisted metal organic deposition at room temperature. The effects of the precursor thin film and laser fluence on the resistivity, carrier concentration, and mobility of the Sb-doped SnO2 film were investigated. The resistivity of the Sb-doped SnO2 film prepared by direct irradiation to metal organic film is one order of magnitude lower than that of film prepared by irradiation to amorphous Sb-doped SnO2 film. From an analysis of Hall measurements, the difference between the resistivity of the Sb-doped SnO2 film prepared using the metal organic precursor film and that of amorphous precursor film appears to be caused by the mobility. Direct conversion of the metal organic compound by excimer laser irradiation was found to be effective for preparing epitaxial Sb-doped SnO2 film with low resistivity.  相似文献   

7.
8.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号