首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The surface and interface morphology and magnetization characteristics of Co70Fe30 thin films deposited on bare glass and p-Si/SiO2 substrates and on conjugated polymer poly(3-hexylthiophene-2,5-diyl) (P3HT) thin films on such substrates have been studied by atomic force microscopy and magneto-optic Kerr effect. It was found that the average absolute magnitude of the coercive field of Co70Fe30 correlates with the roughness of the underlayer prior to Co70Fe30 deposition. P3HT deposited on p-Si/SiO2 substrates possesses an increased surface roughness as compared to the p-Si/SiO2 surface, but displays a decreased surface roughness as compared to the one of a bare glass substrate.  相似文献   

2.
We propose using collected galvano-magnetic data on MBE samples of n-type undoped epi-layers of InAs, In0.57Ga0.47As and GaAs on InP semi-insulating and GaAs semi-insulating substrates to characterize their charge transport properties. Hall concentration and resistance measurements vs. temperature were carried out, and these results allowed us to calculate the mean free path and magnetic length. However, they are mono-crystalline, they present multi-component charge transport structures. The characterization of these layers by means of a combined analysis of galvano-magnetic properties, I-V (resistivity), screening and Debye length, mean free path, Mott effect and Bohr radius characteristics gave new and very interesting results.The application of a previously described method of analysis also allows for the presence of a Mott transition to be determined. The presence of a Mott transition leads to the hypothesis that a part of conductance in such layers, especially at low temperatures may be due to an impurity band.We suppose either that during their epitaxial growth all of the investigated layers were unintentionally doped with excess atoms of one component, vacancies of other or that dangling bonds are present. Therefore, in the range of low temperatures, the possible and dominant conduction mechanism is conduction via such defects, with electrons moving by thermally activated hopping.  相似文献   

3.
A luminescent mechanism was constructed for the broad band emission spectra of the X1 phase of the Y2SiO5:Ce phosphor powder. Four Gaussian peaks fit to the cathodoluminescent (CL) and photoluminescent (PL) spectra were attributed to the two different sites (A1 and A2) of the Ce3+ ion in the host matrix and the difference in orientation of the neighbour ions in the complex crystal structure. Each Ce3+ site gives rise to transitions from the 5d to the two (therefore two peaks) 4f energy levels (2F5/2 and 2F7/2 due to crystal field splitting). Energy transfer from other defect levels in the matrix was also observed.  相似文献   

4.
As-deposited antimony sulfide thin films prepared by chemical bath deposition were treated with nitrogen AC plasma and thermal annealing in nitrogen atmosphere. The as-deposited, plasma treated, and thermally annealed antimony sulfide thin films have been characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy, scanning electron microscopy, atomic force microscopy, UV-vis spectroscopy, and electrical measurements. The results have shown that post-deposition treatments modify the crystalline structure, the morphology, and the optoelectronic properties of Sb2S3 thin films. X-ray diffraction studies showed that the crystallinity of the films was improved in both cases. Atomic force microscopy studies showed that the change in the film morphology depends on the post-deposition treatment used. Optical emission spectroscopy (OES) analysis revealed the plasma etching on the surface of the film, this fact was corroborated by the energy dispersive X-ray spectroscopy analysis. The optical band gap of the films (Eg) decreased after post-deposition treatments (from 2.36 to 1.75 eV) due to the improvement in the grain sizes. The electrical resistivity of the Sb2S3 thin films decreased from 108 to 106 Ω-cm after plasma treatments.  相似文献   

5.
This is a review of the derivation of the Landauer conductance using the Keldysh non-equilibrium Green's function (NEGF) formalism and the equations-of-motion (EOM) method. We consider the elastic quantum electronic transport through a multi-lead device and treat the conductor in the mean-field approximation. This is suitable for open quantum dots as well as for several molecular systems where charging effects are negligible. The focus of the presentation is to unveil the technical issues involved in the formalism. We show how the Landauer conductance emerges as a linear term in the current-voltage I-V characteristics and indicate how to go beyond this regime. We address the connection of the NEGF approach to recent developments in molecular transport and discuss the problems that arise when one tries to include interaction effects beyond the mean field.  相似文献   

6.
A low-cost and accurate measurement scheme for characterizing multi-wavelength optical amplifiers is experimentally demonstrated by using an amplified spontaneous emission source and a DWDM multiplexer. By linearly fitting the input and output optical spectral densities, the gain and noise figure of the optical amplifier are determined. The measured results agree well with the data obtained by time-domain-extinction method.  相似文献   

7.
Upon substitution of non-magnetic Al3+ for diamagnetic, low-spin, Co3+ in ferromagnetic La2MnCoO6, the ferromagnetic moment, measured at 82 K and 15 kOe, is found to increase initially with Al content and then decreases, though the magnetic transition temperature decreases continuously on increasing x in La2MnCo1−xAlxO6.  相似文献   

8.
The structure of the n=4 Aurivillius oxide BaBi4Ti4O15 has been studied at room temperature using powder neutron diffraction, and from 300 to 1000 K using synchrotron X-ray diffraction methods. The structure is orthorhombic (space group A21am) at 300 K and transforms to a tetragonal (I4/mmm) structure near 700 K.  相似文献   

9.
The dispersion curves of the dielectric response in single crystal NH4H2PO4 were obtained in the radio frequency range and below the high-temperature transition at Tp−160 °C. The results reveal dielectric relaxation at low frequency, which is about 105 Hz at 70 °C, and it shifts to higher frequencies (∼3×106 Hz) as the temperature increases. The relaxation frequency was determined from the peak obtained in the imaginary part of the permittivity as well as from the derivative of the real part of the permittivity. The activation energy Ea=0.55 eV, obtained from the relaxation frequency is very close to that derived from the dc conductivity. We suggest that this dielectric relaxation could be due to the proton jump and phosphate reorientation that cause distortion and change the local lattice polarizability inducing dipoles like   相似文献   

10.
The effects of magnetic property dependence of the Mn1.56Co0.96Ni0.48O4 (MCN) films on crystallization are investigated in the growth temperature of 450-750 °C. With the growth temperature increase, both the crystalline quality and the grain size improve. The MCN films exhibit paramagnetic to ferromagnetic transition and the paramagnetic parts fit to the modified Curie-Weiss law. The ferromagnetic couplings of the magnetic ions in the MCN films enhance at elevated growth temperature. The saturation magnetization at 5 K increases with increasing growth temperature, but coercive field decreases monotonously. The magnetic properties of the MCN films strongly depend on their microstructures.  相似文献   

11.
The degree of order S of Mn–Ir layers and the exchange anisotropy of Mn–Ir/Co–Fe bilayers were investigated for various chemical compositions of Mn–Ir layers, underlayer materials, and underlayer thicknesses. It was found that: (1) The compositional range over which L12-phase Mn3Ir could be formed is 22–32 at% Ir and giant exchange anisotropy is obtained in this range. (2) Ru is favorable as an underlayer material for avoiding interdiffusion with the Mn–Ir layer during deposition on the temperature elevated substrate. (3) The underlayer thickness could be reduced to 5 nm while maintaining a giant exchange anisotropy in excess of 1 erg/cm2.  相似文献   

12.
A magnetic fringe-field effect has been investigated for a simple bilayer device structure consisting of a Co0.9Fe0.1 film and an epitaxial YBa2Cu3O7−δ (YBCO) film patterned as a microbridge. The resistance of the bridge is measured with a four-probe technique and is found to depend on the orientation of a magnetic field, which is externally applied in the device plane. A maximum (minimum) of the resistance occurs when the magnetic field is applied in parallel (perpendicular) to the bridge axis. The difference between the maximum and the minimum is very large for a small range of temperature below the critical temperature of the YBCO film. The observed features in the resistance are qualitatively explained by vortex motion in the YBCO bridge under the influence of the magnetic fringe-field of the Co0.9Fe0.1 film.  相似文献   

13.
14.
High-coercivity Au(60 nm)/FePt(δ nm)/Au(60 nm) trilayer samples were prepared by sputtering at room temperature, followed by post annealing at different temperatures. For the sample with δ=60 nm, L10 ordering transformation occurs at 500 °C. Coercivity (Hc) is increased with the annealing temperature in the studied range 400–800 °C. The Hc value of the trilayer films is also varied with thickness of FePt intermediate layer (δ), from 27 kOe for δ=60 nm to a maximum value of 33.5 kOe for δ=20 nm. X-ray diffraction data indicate that the diffusion of Au atoms into the FePt L10 lattice is negligible even after a high-temperature (800 °C) annealing process. Furthermore, ordering parameter is almost unchanged as δ is reduced from 60 to 15 nm. Transmission electron microscope (TEM) photos indicate that small FePt Ll0 particles are dispersed amid the large-grained Au. We believe that the high coercivity of the trilayer sample is attributed to the small and uniform grain sizes of the highly ordered FePt particles which have perfect phase separation with Au matrix.  相似文献   

15.
La2O3 doped nanocrystalline zirconia (ZrO2) was prepared by chemical co-precipitation method for the 3, 5, 8, 10, 15, 20 and 30 mol.% concentrations of La2O3. Structural studies were performed using X-ray diffraction (XRD). All the as-synthesized samples were found to be in monoclinic phase. As-synthesized samples were given heat treatment at higher temperatures for tetragonal/cubic structural phase stabilization. Sintering the samples at temperature 1173 K stabilized the tetragonal and cubic phases. A slight shift in the 100% peak of the cubic phase was observed towards the low diffraction angle indicating the substitution of the bigger La3+ ion into the ZrO2 lattice. Grain sizes were found to lie between 10 and 13 nm. Electrical conductivity studies were performed on the cubic phase stabilized La2O3-ZrO2 by complex impedance spectroscopy. The conductivity increases up to the dopant concentration 10 mol.% and then decreases with further increase in La2O3 concentration. Initial increase in conductivity is correlated to the stabilization of the cubic phase and the subsequent decrease in the conductivity with the dopant content is interpreted on the basis of the oxygen-ion movement model. Electrical conductivity has contributions from grain and grain boundary regions. But the grain boundary conductivity is slightly higher than the corresponding grain conductivity. Higher grain boundary conductivity shows higher diffusion coefficient for the atoms on the surface of the ZrO2 grains. The possible mechanism of the oxygen ion conduction in the La2O3 stabilized zirconia (LSZ) is reported. The Barton, Nakajima and Namikawa (BNN) relation has been applied to the conductivity data and found that the d.c. and a.c. conductions have been correlated to each other by the same mechanism.  相似文献   

16.
The electrical conductance of 20% Ti-doped La0.7Sr0.3MnO3 (LSMO) was measured using admittance spectroscopy over a wide temperature and frequency ranges. The impedance plane plot shows semicircle arcs at different temperatures and an electrical equivalent circuit has been proposed to explain the impedance results. Activation energy inferred from conductance spectrum matches very well with the value estimated from relaxation time indicating that relaxation process and conductivity have the same origin. The electrical conductance of La0.7Sr0.3Mn0.8Ti0.2O3 is found to be dependent on temperature and frequency. Also, the electronic conduction appears to be dominated by thermally activated hopping of small polaron (SPH) at high temperatures and by variable range hopping (VRH) at low temperatures.  相似文献   

17.
The magnetic and structural properties of epitaxial Fe films grown on Si(1 1 1) are investigated by polarized neutron reflectometry (PNR) at room temperature. The influence of different types of interfaces, Fe/Si, Fe/FeSi2 and Au/Fe on the magnetic properties of Fe films deposited by molecular beam epitaxy onto Si(1 1 1) are characterized. We observe a drastic reduction of the magnetic moment in the entire Fe film deposited directly on the silicon substrate essentially due to strong Si interdiffusion throughout the whole Fe layer thickness. The use of a silicide FeSi2 template layer stops the interdiffusion and the value of the magnetic moment of the deposited Fe layer is close to its bulk value. We also evidence the asymmetric nature of the interfaces, Si/Fe and Fe/Si interfaces are magnetically very different. Finally, we show that the use of Au leads to an enhancement of the magnetization at the interface.  相似文献   

18.
The zircon-type and scheelite-type CaCrO4 are investigated by first-principles calculations based on density-functional theory. The calculated zircon-type lattice parameters and the oxygen positions are in agreement with the experimental results and those of scheelite-type structure are studied for the first time in this work. The theoretical phase transition pressure of CaCrO4 from zircon phase to scheelite phase is about 5.8 GPa, which is consistent with the experimental observation. From the density of states and the electronic band structures, CaCrO4 is an insulator with a direct band gap (2.16 eV) for zircon-type structure and an indirect band gap (1.98 eV) for scheelite-type structure. The bulk moduli of the two phases are evaluated from the Murnaghan equation fit to the total energies as a function of the unit cell volume.  相似文献   

19.
Cr/SiO2 catalysts with 1 or 3 wt.% Cr loadings and different chromium precursors were characterized by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). A method to determine chromium species in the sample was developed through the decomposition of the Cr 2p XPS spectrum in Cr6+ and Cr3+ standard spectra. The results of the binding energy from the Cr 2p region and of the distribution of chromium species allowed to evaluate the dynamic photo-reduction of the surface chromium species during XPS analysis. Photo-reduction of surface Cr6+ to Cr3+ species was verified for all samples supported in silica, depending on the precursor and chromium content. Bulk CrO3 and Cr2O3 standards did not reveal variation in the binding energy of Cr 2p3/2, but a physical mixture of CrO3 with SiO2 presented photo-reduction. The behavior of this mixture resembled to the catalysts and suggests the participation of the surface hydroxyls of silica in the photo-reduction process. XPS intensity measurements for assessing dispersion of chromium oxide were used to compare the calcined and reduced catalysts to different chromium precursors. Polyethylene chains were detected by in situ XPS, while oligomerization products were not observed.  相似文献   

20.
The aim of this work is to calculate carrier relaxation rates from the upper laser level due to electron-electron interactions in three and four-level quantum cascade lasers (QCLs) in a strong magnetic field. The comparison between calculated results and previously obtained values for acoustical and optical-phonon scattering processes indicates that carrier-carrier scattering might have noticeable influence on laser output properties, depending on the structural design. Numerical results are presented for two λ ∼ 9 μm GaAs-based QCLs in magnetic fields between 20 T and 60 T and the band nonparabolicity is taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号