首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Alcohol based sols of cerium chloride (CeCl3·7H2O) and titanium propoxide (Ti(OPr)4) in ethanol mixed in different mole ratios have yielded mixed oxide films on densification at 500 °C. The reversibility of the intercalation/deintercalation reactions has shown electrochemical stability of the films. Addition of TiO2 in an equivalent mole ratio manifests in producing highly transparent films with appreciable ion storage capacity. The electrochemical studies have revealed the significant role of TiO2 in controlling the ion storage capacity of the films, as it tends to induce the disorder. In addition, the films prepared from an aged sol are observed to exhibit a much higher ion storage capacity than the films deposited using the as-prepared sol. The X-ray photoelectron spectroscopic studies have provided information on the variation of Ce4+/Ce3+ ratio as a function of increased TiO2 content in the films. This study has led to a better understanding of the increased ion storage capacity with the increased TiO2 proportion. The transmission electron microscopic study has demonstrated the presence of CeO2 nanograins even in films, which are amorphous to X-rays. Elucidation of the structural, optical and electrochemical features of the films has yielded information on aspects relevant to their usage in transmissive electrochromic devices. The films have been found to exhibit properties that can find application as counter electrode in electrochromic smart windows in which they are able to retain their transparency under charge insertion, high enough for practical uses. Also, the fastest coloration-bleaching kinetics for the primary electrochromic electrode (WO3) working in combination with Ce/Ti (1:1) electrode stimulates the use of latter in electrochromic windows (ECWs).  相似文献   

2.
A study of fused silica micro/nano patterning by focused-ion-beam   总被引:1,自引:0,他引:1  
A dual-beam scanning electron microscopy (SEM)/focused-ion-beam (FIB) system was used to pattern fused silica substrates coated with a 15 nm thin Cr layer. The dimensions of fabricated features together with their surface morphology and profiles were investigated by SEM and atomic force microscopy (AFM). The study demonstrated that with the increase of the ion beam fluence the sputtering rate of the fused silica decreased non-linearly. Also, it was found that initially the sputtering rate increased with the increase of the beam current, after reaching a maximum value, it started decreasing when further beam current increment was performed. Compared with unprocessed areas, the surface finish of the features fabricated by FIB exhibited a significant improvement, and the ion fluence influence on the surface roughness of trenches with low aspect ratios could be considered as negligible. Using a fine beam probe, nano-gratings in the form of grooves with a width down to 54 nm and an aspect ratio higher than three were fabricated. The study showed that FIB machining could be an alternative technology to e-beam lithography for producing fused silica templates for UV nanoimprinting.  相似文献   

3.
We have performed an experimental analysis on the investigation of high energy ion beam irradiation on Si(1 0 0) substrates at room temperature using a low energy plasma focus (PF) device operating in methane gas. The surface modifications induced by the ion beams are characterized using standard surface science diagnostic tools, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), photothermal beam deflection, energy-dispersive X-ray (EDX) analysis and atomic force microscope (AFM) and the results are reported. In particular, it has been found that with silicon targets, the application of PF carbon ion beams results in the formation of a surface layer of hexagonal (6H) silicon carbide, with embedded self-organized step/terrace structures.  相似文献   

4.
T /nS of nT rearrangements and nS atoms in the spike volume as the crucial parameter characterizing the ability of a given ion–target combination to achieve complete rearrangement of the spike volume. nT/nS>1 is the optimum condition for diamondlike film growth. For aC films the ion energy dependence of nT/nS agrees well with the measured sp3 bond fraction. For Ar+-ion-assisted deposition of aC we find nT/nS>1 above 50 eV with no pronounced ion energy dependence. Furthermore, our model predicts optimum conditions for the formation of cubic boron nitride between 50 eV and 3 keV. Accepted: 14 October 1997  相似文献   

5.
Two groups of Mo/Si films were deposited on surface of Si(1 0 0) crystal. The first group of the samples was prepared by both ion beam assisted deposition (IBAD) and metal vapor vacuum arc (MEVVA) ion implantation technologies under temperatures from 200 to 400 °C. The deposited species of IBAD were Mo and Si, and different sputtering Ar ion densities were selected. The mixed Mo/Si films were implanted by Mo ion with energy of 94 keV, and fluence of Mo ion was 5 × 1016 ions/cm2. The second group of the samples was prepared only by IBAD under the same test temperature range. The Mo/Si samples were analyzed by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), sheet resistance, nanohardness, and modulus of the Mo/Si films were also measured. For the Mo/Si films implanted with Mo ion, XRD results indicate that phase of the Mo/Si films prepared at 400 and 300 °C was pure MoSi2. Sheet resistance of the Mo/Si films implanted with Mo ion was less than that of the Mo/Si films prepared without ion implantation. Nanohardness and modulus of the Mo/Si films were obviously affected by test parameters.  相似文献   

6.
We developed a micro-magnetometry with a 2.5 μm spatial resolution based on micro X-ray magnetic circular dichroism (XMCD) technique in order to study magnetic properties of dot arrays for bit-patterned media. This micro-magnetometer was applied to the magnetic characterization of Co–Pt dot arrays fabricated by ion beam etching. As the dot size became small, the intensity of XMCD drastically decreased for dots fabricated by Ga-focused ion beam. This suggested that the dot edges were damaged magnetically by implantation of Ga ions. The damaged width of the dot edge was estimated to be about 13 nm from the decrease in XMCD intensities. This damaged edge width agreed with the ion-implanted area estimated by Monte-Carlo simulation. The less-damaged effect of Ar ion etching was verified by the XMCD measurement of Co–Pt dots with diameter of 20 and 70 nm. It was concluded that ions with inertness, lower energy and smaller atomic number should be used to fabricate dot arrays with an areal density of 1 Tbit/in2.  相似文献   

7.
A simple and scalable scheme is proposed to generate a n-qubit W state in a trapped-ion system without the Lamb-Dicke limit. The n-qubit W state can be generated by the interaction between the ions and the laser field if the collective mode is initially prepared in the single-phonon state and each ion is in the ground state. The scheme only requires a single laser and avoids laser manipulation of the individual ion. The time required to complete the process decreases with the number of ions. The present scheme is not limited to small values of the LD parameter, which greatly enhances operation speeds.  相似文献   

8.
An audio-frequency plasma polymerization set-up with a planar plasma source was used to deposit thin heptadecafluoro-1-decene (HDFD) plasma polymer films. The morphology and chemical structure of the films after deposition were compared with the state of the film after a subsequent Ar-plasma treatment by means of in situ Fourier transform infrared reflection absorbance spectroscopy (FT-IRRAS), X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and atomic force microscopy (AFM) as well as contact angle measurements. The results revealed the correlation of wettability of the model Teflon-like films with change of surface chemistry and surface topography as a result of Ar-plasma treatment.  相似文献   

9.
Square magnetic elements with side in the 100–500 nm range have been fabricated using the focused ion beam (FIB) milling technique from a 10 nm thick, single-crystal Fe film, epitaxially grown on MgO(0 0 1). Thanks to the good crystal quality of the film, magnetic elements with well-defined magnetocrystalline anisotropy have been prepared, while the fine control of the size and shape of the magnets allows for the effective engineering of the anisotropic behavior of the magnetostatic energy that determines the so-called configurational anisotropy. Micromagnetic calculations and experiments show that the angular dependence of the transverse susceptibility has a strong dependence on the material parameters as well as on the static applied field. This allows the effective engineering of the total anisotropy of the magnets.  相似文献   

10.
An alternative method of how to characterize, at equilibrium, the diffusion process of a Brownian charged particle (heavy ion) in a fluid in presence of an electromagnetic field is presented. The theory is formulated via a Langevin equation associated with the ion's velocity vector, which is transformed to another velocity-space in which the diffusion process is quite similar to that of the ordinary Brownian motion. The diffusion process is characterized, in absence and in presence of the electric field, through the mean square displacement in the transformed configuration-space and then returned to the original variables, by means of the corresponding transformation. Under the action of the electric field, the diffusion process is studied for a general time-dependent electric field. Explicit results are obtained for a constant and oscillating electric field.  相似文献   

11.
Cu film and Ti/Cu film on polyimide substrate were prepared by ion implantation and ion beam assisted deposition (IBAD) techniques. Three-dimension white-light interfering profilometer was used to measure thickness of each film. The thickness of the Cu film and Ti/Cu film ranged between 490 nm and 640 nm. The depth profile, surface morphology, roughness, adhesion, nanohardness, and modulus of the Cu and Ti/Cu films were measured by scanning Auger nanoprobe (SAN), atomic force microscopy (AFM), and nanoindenter, respectively. The polyimide substrates irradiated with argon ions were analyzed by scanning electron microscopy (SEM) and AFM. The results suggested that both the Cu film and Ti/Cu film were of good adhesion with polyimide substrate, and ion beam techniques were suitable to prepare thin metal film on polyimide.  相似文献   

12.
Thin gold films were fabricated by vacuum resistive deposition on the n-Ge (1 1 1) wafers. The films were annealed between 300 and 600 °C. These resulting thin films were then characterised using scanning electron microscopy (field emission and back-scattering modes), Rutherford back scattering spectroscopy and time of flight secondary ion mass spectroscopy (TOF-SIMS). For temperatures below the eutectic temperature the distribution of both the gold and the germanium on the surface are uniform. Above the eutectic temperature, the formation of gold rich islands on the surface of the Germanium were observed. These changes in the microstructure were found to correspond to changes in the electrical characteristics of the diodes.  相似文献   

13.
L10‐FePt and exchange‐coupled L10‐FePt/Fe composite films are grown epitaxially on MgO(001) single crystal substrates and are subsequently large‐area patterned utilizing an electron beam lithography process with Ar+ ion etching. The patterning process of the continuous film system leads to a different demagnetization behavior resulting in an increase of the out‐of‐plane coercivity of the patterned samples. Due to exchange‐coupling between L10‐FePt and Fe the coercivity of the L10‐FePt/Fe composite patterns is reduced by 52% as compared to the coercivity of L10‐FePt patterns. From the analysis of the temperature dependence of the coercivity it follows that the dots include regions with reduced anisotropy. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
High purity alumina ceramics (99% Al2O3) was implanted by copper ion and titanium ion in a metal vapour vacuum arc (MEVVA) implanter, respectively. The influence of implantation parameters was studied varying ion fluence. The samples were implanted by 68 keV Cu ion and 82 keV Ti ion with fluences from 1 × 1015 to 1 × 1018 ions/cm2, respectively. The as-implanted samples were investigated by scanning electron microscopy (SEM), glancing X-ray diffraction (GXRD), scanning Auger microscopy (SAM), and four-probe method. Different morphologies were observed on the surfaces of the as-implanted samples and clearly related to implantation parameters. For both ion implantations, the sheet resistances of the alumina samples implanted with Cu and Ti ion fluences of 1 × 1018 ions/cm2, respectively, reached the corresponding minimum values because of the surface metallization. The experimental results indicate that the high-fluence ion implantation resulted in conductive layer on the surface of the as-implanted high purity alumina ceramics.  相似文献   

15.
The irradiation effect of 1 MeV C+ on the interface and magnetic anisotropy of epitaxial Cu/Ni system with a perpendicular magnetic anisotropy was investigated by using magneto-optical Kerr effects, grazing incident diffraction and X-ray reflectivity. The magnetic easy-axis was altered from the direction along the surface normal to in-plane and the strain in the Ni layer was relaxed after ion irradiation. Though the interface between the top Cu layer and the Ni layer becomes rough, the contrast of electron densities of Cu and Ni layer increases and the grain-growth occurs during ion irradiation. These phenomena arise from thermo-chemical driving force, i.e. heat of formation, which may be a crucial factor in determining the interface shape in the case of indirect energy transfer mechanism. Therefore, the change of the magnetic anisotropy of the Ni/Cu system after ion irradiation is not due to the formation of the intermixed layer at the interface. The ion irradiation effects on the grain-growth and enhancement of the electronic contrast between Ni and Cu are explained by the interfacial atomic movement caused by thermo-chemical driving force.  相似文献   

16.
The InGaN based multiple quantum well (MQW) structure in a commercially available white light emitting diode (LED) was studied by transmission electron microscopy (TEM) and three‐dimensional atom probe tomography (APT). The average In mole fraction by three‐dimensional (3D) APT was found to be about 18% in the InGaN well which is consistent with the secondary ion mass spectrometry (SIMS) analysis. The In distribution in the InGaN well layer was analyzed by the iso curve mapping of 3D APT and found to be non‐uniform in the InGaN active layer. In clustering or In rich regions in the range of 2–3 nm size were found, in contrast to recent reports. Our results thus indicate that In clustering is essential for high‐brightness InGaN based LEDs. We have also observed a discontinuity in the range of 50–100. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
A modeling work has been conducted on a phenomenon called post ion milling (PIM), a post-treatment of Ar+ ion sputtering to modify nanostructures on solid surface. It was found by experiments that for PIM with a sufficiently low ion flux, both the average dot size and the surface roughness of Si nanodot arrays on Si(1 0 0) decline steadily against milling time. However, the usually adopted Kuramoto-Sivashinsky (KS) model involving the Bradley-Harper (BH) theory failed to explain the experimental results, nor the KS model that combines both the BH and Ehrlich-Schwoebel (ES) effects. We reexamined the ES term in the KS equation, and derived new terms reflecting the ES contribution. With such a modification, the KS model involving both the BH and the refined ES effects finally gave a qualitative explanation to the PIM result.  相似文献   

18.
HgCdTe thin films have been deposited on Si(1 1 1) substrates at different substrate temperatures by pulsed laser deposition (PLD). An Nd:YAG pulsed laser with a wavelength of 1064 nm was used as laser source. The influences of the substrate temperature on the crystalline quality, surface morphology and composition of HgCdTe thin films were characterized by X-ray diffraction (XRD), selected area electron diffraction (SAED), atomic force microscopy (AFM) and energy dispersive X-ray spectroscopy (EDS). The results show that in our experimental conditions, the HgCdTe thin films deposited at 200 °C have the best quality. When the substrate temperature is over 250 °C, the HgCdTe film becomes thermodynamically unstable and the quality of the film is degraded.  相似文献   

19.
To improve antithrombogenicity of polyethylene (PE) films, the films pretreated by Ar plasma were radiated by ultraviolet light to initiate grafting polymerization with acrylamide (AAm) in absence of photo-initiator, then the AAm-grafted PE films (PE-g-AAm) were alcoholized with octadecyl alcohol. Effects of Ar plasma composite parameter (W/FM), pretreated time, AAm monomer concentration, and UV irradiation time on grafting rate were investigated systematically. AAm-grafted PE film and alcoholized PE film (PE-g-SAAm) were characterized by contact angle, X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transfer infrared (ATR-FT-IR) spectroscopy and atomic force microscope (AFM), respectively. The results indicated that the moieties of AAm and stearyl were successively immobilized onto the PE surface. The platelet adhesion experiment showed that antithrombogenicity of the modified PE films was improved in comparison with PE films. The change in antithrombogenicity is attributed to the surface of the modified film in presence of tail-like structure which consists of polyacrylamide as spacer and stearyl as end groups.  相似文献   

20.
2 has been used for smoothing of rough InAs, InP, and InSb surfaces, prepared by argon ion beam etching (IBE). The evolution of the surface roughness and morphology has been studied by atomic force microscopy (AFM) as a function of the N2 RIBE process parameters (ion beam energy, ion beam angle of incidence, and ion dose). A drastic improvement of the surface roughness has been observed for ion beam angles near normal incidence and larger than 70° with increasing ion doses. By using this technique, the initial root-mean-square (rms) roughness of, e.g., InSb of about 40 nm could be decreased to about 1 nm. Received: 20 March 1998/Accepted: 24 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号