首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Beginning in 2007, a program was established at the Idaho National Laboratory to update key capabilities enabling microstructural and micro-chemical characterization of highly irradiated and/or radiologically contaminated nuclear fuels and materials at scales that previously had not been achieved for these types of materials. Such materials typically cannot be contact handled and pose unique hazards to instrument operators, facilities, and associated personnel. Over the ensuing years, techniques have been developed and operational experience gained that has enabled significant advancement in the ability to characterize a variety of fuel types including metallic, ceramic, and coated particle fuels, obtaining insights into in-reactor degradation phenomena not achievable by any other means. The following article describes insights gained, challenges encountered, and provides examples of unique results obtained in adapting dual beam FIB technology to nuclear fuels characterization.  相似文献   

2.
The interplay between swelling and milling phenomena in determining the morphology of Focused Ion Beam (FIB) -processed MgO(0 0 1) was investigated by atomic force microscopy. At the early stages of ion irradiation, before milling erosion is observed, MgO shows a relevant swelling behaviour with protrusion of the bombarded areas up to 6 nm for a dose of 5 × 1016 ions cm−2. The effect is mainly ascribed to subsurface defect accumulation, while the low Ga ions concentration, as measured by in-depth Auger analysis, seems to exclude a contribution from ion implantation. In order to explain and control the morphology of Fe/NiO FIB patterned sub-micron structures on MgO substrates, we have also investigated FIB effects on Fe(0 0 1) and NiO(0 0 1) single crystals. Absent or negligible swelling has been observed on these materials.  相似文献   

3.
Qin Hu 《Applied Surface Science》2010,256(20):5952-5956
To explore the machining characteristics of glassy carbon by focused ion beam (FIB), particles induced by FIB milling on glassy carbon have been studied in the current work. Nano-sized particles in the range of tens of nanometers up to 400 nm can often be found around the area subject to FIB milling. Two ion beam scanning modes - slow single scan and fast repetitive scan - have been tested. Fewer particles are found in single patterns milled in fast repetitive scan mode. For a group of test patterns milled in a sequence, it was found that a greater number of particles were deposited around sites machined early in the sequence. In situ EDX analysis of the particles showed that they were composed of C and Ga. The formation of particles is related to the debris generated at the surrounding areas, the low melting point of gallium used as FIB ion source and the high contact angle of gallium on glassy carbon induces de-wetting of Ga and the subsequent formation of Ga particles. Ultrasonic cleaning can remove over 98% of visible particles. The surface roughness (Ra) of FIB milled areas after cleaning is less than 2 nm.  相似文献   

4.
Well-ordered and highly uniform nanoripple structures on the surface of single crystal LaAlO3 (1 0 0), SrTiO3 (1 0 0) and Al2O3 (0 0 0 1) were formed via self-assembly (not by beam writing) by focused ion-beam bombardment. The morphology and topography of nanoripple structures were characterized using in-situ focused ion-beam/scanning electron microscope, as well as ex-situ atomic force microscopy. Under off-normal bombardment without sample rotation, the characteristic wavelength of nanoripples varying from 248 to 395 nm on the LaAlO3 (1 0 0) surface can be obtained by changing ion fluence and incident angle. When all sputtering parameters except the ion fluence are constant, the wavelength of nanoripples is increased with the enhanced ion fluence. These results demonstrate the potential application of using ion sputtering method for fabricating the well-ordered and highly uniform nanoripples which can be used in nanodevices.  相似文献   

5.
黄成龙  张继成  刁凯迪  曾勇  易勇  曹磊峰  王红斌 《物理学报》2014,63(1):18101-018101
采用聚焦离子束直写技术,成功制作了面积为200μm×200μm,线密度500 mm 1,圆孔直径800 nm,金吸收体厚度为500 nm的单级衍射量子点阵光栅.研究了该光栅在波长442 nm激光下不同传输距离的衍射特性以及相对衍射效率.实验结果表明,量子点阵光栅不存在高级衍射,只保留了±1级和0级衍射,具有良好的单级衍射特性.1级衍射与0级衍射间距随传输距离的增大而增大,实测值与理论计算值相符.  相似文献   

6.
Metal-insulator-semiconductor (MIS) structures with a nanocrystal carbon (nc-C) embedded in SiO2 thin films were fabricated using a focused ion beam (FIB) system with a precursor of low-energy Ga+ ion and carbon source. The crystallinity of nc-C was investigated by Raman spectroscopy and atomic force microscopy (AFM). Raman spectra indicate the evidence of crystallization of nc-C after annealed at 600 °C by the sharp peak at 1565 cm−1 in graphite (sp2), while no peak of diamond (sp3) could be seen at 1333 cm−1. The AFM images showed the nc-C dots controlled with diameter of 100 nm, 200 nm and 300 nm, respectively. The above results revealed that the nc-C dots had sufficiently stuck onto SiO2 films. The hysterisis loop in the capacitance-voltage characteristics appeared in the MIS device with SiO2/nc-C/SiO2 structure in which voltage shift is 0.32 V for radical oxidation and 0.14 V for dry oxidation, respectively.  相似文献   

7.
Pure hydrogenated amorphous carbon (α-C:H) and nitrogen doped hydrogenated amorphous carbon (α-C:H:N) thin films were prepared using end-Hall (EH) ion beam deposition with a beam energy ranging from 24 eV to 48 eV. The composition, microstructure and mechanical properties of the films were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, scanning probe microscopy (SPM), and nano-scratch tests. The films are uniform and smooth with root mean square roughness values of 0.5-0.8 nm for α-C:H and 0.35 nm for α-C:H:N films. When the ion energy was increased from 24 eV to 48 eV, the fraction of sp3 bonding in the α-C:H films increased from 36% to 55%, the hardness increased from 8 GPa to 12.5 GPa, and the Young's modulus increased from 100 GPa to 130 GPa. In the α-C:H:N films, N/C atomic ratio, the hardness and Young's modulus of the α-C:H:N films are, 0.087, 15 and 145 GPa, respectively. The results indicate that both higher ion energy and a small amount of N doping improve the mechanical properties of the films. The results have demonstrated that smooth and uniform α-C:H and α-C:H:N films with large area and reasonably high hardness and Young's modulus can be synthesized by EH ion source.  相似文献   

8.
R. Zdyb  A. Pavlovska  E. Bauer 《Surface science》2006,600(8):1586-1591
The magnetic domain structure of Fe wires, ribbons and islands with different shapes that have been prepared under ultra high vacuum conditions on W(1 1 0) are studied with spin polarized low energy electron microscopy. The dimensions of the nanostructures, which are of the order of tens and hundreds of nm, can be controlled by the temperature at which they are produced, by the average Fe coverage and by the substrate morphology. The domain structure of the nanostructures depends on their shape and is determined by the competition between magnetoelastic, shape and magnetocrystalline anisotropies.  相似文献   

9.
Three-dimensional(3D)vertical architecture transistors represent an important technological pursuit,which have distinct advantages in device integration density,operation speed,and power consumption.However,the fabrication processes of such 3D devices are complex,especially in the interconnection of electrodes.In this paper,we present a novel method which combines suspended electrodes and focused ion beam(FIB)technology to greatly simplify the electrodes interconnection in 3D devices.Based on this method,we fabricate 3D vertical core-double shell structure transistors with ZnO channel and Al2O3 gate-oxide both grown by atomic layer deposition.Suspended top electrodes of vertical architecture could be directly connected to planar electrodes by FIB deposited Pt nanowires,which avoid cumbersome steps in the traditional 3D structure fabrication technology.Both single pillar and arrays devices show well behaved transfer characteristics with an Ion/Ioff current ratio greater than 106 and a low threshold voltage around 0 V.The ON-current of the 2×2 pillars vertical channel transistor was 1.2μA at the gate voltage of 3 V and drain voltage of 2 V,which can be also improved by increasing the number of pillars.Our method for fabricating vertical architecture transistors can be promising for device applications with high integration density and low power consumption.  相似文献   

10.
T. Kravchuk 《Surface science》2006,600(6):1252-1259
In this study we investigate the influence of alloying on the reactivity and bonding of oxygen on α-Cu-Al(5 at.%)(1 0 0) oriented single crystal surfaces by X-ray photoelectron spectroscopy (XPS), ultra-violet spectroscopy (UPS) and low energy ion scattering (LEIS) spectroscopy, at room temperature. It was found that alloying results in an enhanced reactivity of both Cu and Al sites in comparison with the pure metals. According to adsorption curves calculated from XPS, saturation of the alloy surface occurs for exposures of ∼15 L. At saturation the total amount of adsorbed oxygen is similar for the alloy and pure copper surfaces. It was determined that first mostly Al sites are oxidized, followed by simultaneous oxidation of Cu and Al sites. At saturation the amount of oxygen bonded to Cu sites is ∼1.7 larger then that bonded to Al sites. From a comparison of the XPS and LEIS data analysis as a function of oxygen exposure it was found that oxidation of α-Cu-Al(5 at.%)(1 0 0) alloy is a multi-stage process with fast and slow stages. These stages involve an interplay of chemisorption, sub-surface diffusion of oxygen and Al segregation. UPS measurements show an increase in the work function of the alloy surface with oxygen adsorption. This is a contrast to pure Cu surfaces where the work function decreases at the initial stages of oxidation followed by an increase with oxygen exposure. Annealing to 400 °C drives the oxidized alloy surface into its thermodynamic state resulting in the formation of an aluminum oxide layer. Possible mechanisms to explain the enhanced reactivity of the alloy surface compared to that of pure copper are suggested and discussed.  相似文献   

11.
This article deals with the development of an original sample preparation method for transmission electron microscopy (TEM) using focused ion beam (FIB) micromachining. The described method rests on the use of a removable protective shield to prevent the damaging of the sample surface during the FIB lamellae micromachining. It enables the production of thin TEM specimens that are suitable for plan view TEM imaging and analysis of the sample surface, without the deposition of a capping layer. This method is applied to an indented silicon carbide sample for which TEM analyses are presented to illustrate the potentiality of this sample preparation method.  相似文献   

12.
We have discriminated individual Ge atoms from the intermixed Ge/Si(1 1 1)-(7 × 7) surface using a non-contact atomic force microscope at a room temperature environment. In fact, Si-Ge (IV-IV) binary system is considered as one of the most difficult systems for atomic discrimination among atoms in the IV group because of the similarities in the electronic and chemical properties. However, in this study, we found one of the most attractive tools to discriminate a specific atom from the others even in the difficult Si-Ge system. Ge atoms are shown as dim spots in comparison to Si atoms with bright spots on the intermixed surface by a weak chemical bonding energy and/or a relaxation effect despite large atomic radius and high spatial position in both variable frequency shift and topographic images. The discrimination of individual atoms with respect to the chemical interaction variation will further provide a chance to manipulate different atomic species and assemble various nanostructures in near future.  相似文献   

13.
T. Bernhard 《Surface science》2006,600(9):1877-1883
The structure and magnetism of thin epitaxial Fe layers grown on Cu(0 0 1) is investigated by grazing scattering of fast H and He atoms. Information on the atomic structure of the film and substrate surfaces is obtained by making use of ion beam triangulation with protons. The magnetic behavior is studied via the polarization of light emitted after capture of spin-polarized electrons into excited atomic terms during scattering of He atoms. For the formation of bcc(1 1 0)-like Fe films at higher coverages, we detect differences in structural and magnetic properties for room and low temperature growth. We suggest that the crystalline structure depends on the film morphology and that Cu impurities affect the magnetic properties.  相似文献   

14.
In this paper we report femtosecond laser-induced forward transfer (LIFT) of pre-machined donor films. 1 μm thick zinc oxide (ZnO) films were first machined using the focussed ion beam (FIB) technique up to a depth of 0.8 μm. Debris-free micro-pellets of ZnO with extremely smooth edges and surface uniformity were subsequently printed from these pre-machined donors using LIFT. Printing results of non-machined ZnO donor films and films deposited on top of a polymer dynamic release layer (DRL) are also presented for comparison, indicating the superior quality of transfer achievable and utility of this pre-machining technique.  相似文献   

15.
M. Walker  M. Draxler 《Surface science》2006,600(16):3327-3336
The initial growth of Pt on the Ni(1 1 0)-(3 × 1)-O and NiO(1 1 0) surfaces has been studied by coaxial impact collision ion scattering spectroscopy (CAICISS), low energy electron diffraction (LEED) and X-ray photoelectron spectroscopy (XPS). Prior to Pt deposition, the atomic structure of the near-surface regions of the Ni(1 1 0)-(3 × 1)-O and NiO(1 1 0) structures were studied using CAICISS, finding changes to the interlayer spacings due to the adsorption of oxygen. Deposition of Pt on the Ni(1 1 0)-(3 × 1)-O surface led to a random substitutional alloy in the near-surface region at Pt coverages both below and in excess of 1 ML. In contrast, when the surface was treated with 1800 L of atomic oxygen in order to form a NiO(1 1 0) surface, a thin Pt layer was formed upon room temperature Pt deposition. XPS and LEED data are presented throughout to support the CAICISS observations.  相似文献   

16.
The aim of this paper is to check the effect of artefacts introduced by focused ion beam (FIB) milling on the strain measurement by convergent beam electron diffraction (CBED). We show that on optimized silicon FIB samples, the strain measurement can be performed with a sensitivity of about 2.5 × 10−4 which is very close to the theoretical one and we conclude that FIB preparation can be suitable for such measurements in microelectronic devices.

To achieve this, we first used CBED and electron energy loss spectroscopy (EELS) which provide a procedure permitting an exact knowledge of the sample geometry, i.e. the thickness of both amorphous and crystalline layers. This procedure was used in order to measure the FIB-amorphized sidewall layer. It was found that if the FIB preparation is optimized one can reduce this amorphous layer down to around 7 nm on each side. Secondly different preparation techniques (cleavage, Tripod™ and FIB) permit to check if the surface damaged layer introduced by FIB influences the strain state of the sample. Finally, it was found that the damaged layer does not introduce measurable strain in pure silicon but reduces appreciably the quality of the CBED patterns.  相似文献   


17.
Using scanning tunneling microscopy (STM) and time of flight secondary ion mass spectrometry (TOF/SIMS), we observed radiation effects on a Si(1 1 1)-(7 × 7) surface in the collision of a single highly charged ion (HCI) with a charge state q up to q = 50. The STM observation with atomic resolution revealed that a nanometer sized crater-like structure was created by a single HCI impact, where the size increased rapidly with q. The secondary ion yields also increased with q in which multiply charged Si ions (Sin+) were clearly observed in higher q HCI-collisions. The sputtering mechanism is briefly discussed, based on the so-called Coulomb explosion model.  相似文献   

18.
We study the nucleation phase of molecular beam epitaxy of (hexagonal) MnAs on (cubic) GaAs (0 0 1) using reflection high-energy electron diffraction (RHEED) azimuthal scans. The nucleation proceeds from a non-reconstructed initial stage through randomly oriented small nuclei and two orientation stages to the final single-phase epitaxial orientation. The fascinatingly complex nucleation process contains elements of both Volmer-Weber and Stranski-Krastanov growth. The measurement demonstrates the potential of high-resolution RHEED techniques to assess details of the surface structure during epitaxy.  相似文献   

19.
The effect of annealing temperature on the surface composition of α-Cu-Al(1 0 0) alloys for aluminum concentrations of 5, 12 and 17 at% was investigated using X-ray photoelectron spectroscopy (XPS) and low energy ion scattering (LEIS). Two initial states of the sample surfaces were examined: sputter-cleaned and oxidized. The effect of annealing temperature on segregation is different for sputter-cleaned and oxidized samples. Aluminum preferential sputtering and strong oxygen induced aluminum segregation were detected on all examined samples. Whilst for the sputter-cleaned surfaces a small thermal induced segregation was observed, the combination of annealing and oxygen exposure resulted in aluminum enrichment in the 100-300% range relative to the bulk concentration. The segregation rate is proportional to the aluminum concentration for sputter-cleaned surfaces and displays a maximum for the oxidized α-Cu-Al(12 at.%)(1 0 0) surface.  相似文献   

20.
Silicon oxynitride films, possessing various compounds of SiO2 and Si3N4, were deposited by ion beam sputtering at room temperature. This technique can easily and precisely control the refractive index and composition of the silicon oxynitride film. Properties of these films, such as the refractive index, the extinction coefficient, the surface roughness, and so on were measured in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号