首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron paramagnetic resonance (EPR) and infrared (IR) spectroscopy were used to study the formation of ruthenium and adsorbed species appearing on the catalyst during O2, NO, and CO adsorption at room temperature on 1 wt% Ru/MgF2 catalysts prepared from Ru3(CO)12 . Both EPR and IR results provided clear evidence for the interaction between surface ruthenium and probe molecules. No EPR signals due to ruthenium (Ru) species were recorded at 300 and 77 K after H2-reduction of the catalyst at 673 K. However, at 4.2 K a very weak EPR spectrum due to low-spin (4d5) Ru3+ complexes was detected. A weak anisotropic O2- radicals signal with g∣∣=2.017 and g=2.003 superimposed on a broad (ΔBpp=120 mT), slightly asymmetric line at g=2.45(1) was identified after O2 admission to the reduced sample. Adsorption of NO gives only a broad, Gaussian-shaped EPR line at g=2.43(1) indicating that the admission of NO, similarly to O2 adsorption, brings about an oxidation of Ru species in the course of the NO decomposition reaction. Introduction of NO over the CO preadsorbed catalyst leads to EPR spectrum with parameters g=1.996, g∣∣=1.895, and AN=2.9 mT assigned to surface NO species associated with Ru ions. The IR spectra recorded after adsorption of NO or CO probe molecules showed the bands in the range of frequency characteristic of ruthenium nitrosyl, nitro, and nitrate/nitrite species and the bands characteristic of ruthenium mono-and multicarbonyls, respectively. Addition of CO after NO admission to the catalyst leads to appearance in the IR spectrum, beside the ones characteristic of NO adsorption, the bands which can be attributed to Ru-CO2 and Ru-NCO species, indicating that the reaction between NO and CO occurs. These species were also detected after CO adsorption followed by NO adsorption, additionally to the band at 1850 cm−1 being due to cis-type species.  相似文献   

2.
In this paper, the structural, thermal and magnetic properties of Ni1−xMnxFe2O4 are presented. It is observed that high concentration of Mn2+ ions into NiFe2O4 tends to reduce the particle size. Calcination at 500 °C has resulted in the growth of Ni1−xMnxFe2O4 nanoparticles, but the calcination at 900 °C has led to the evaporation of the majorities of the polyvinyl alcohol. After calcination at 900 °C, crystallographically oriented NiMnFe2O4 nanoparticles are formed. These Ni1−xMnxFe2O4 nanoparticles show hysteresis behaviour upon magnetization. On the other hand, saturation magnetization (Ms) values decreases with increasing Mn content in ferrite due to the influence of Mn2+ ion in the sub lattice.  相似文献   

3.
Changyu Shen  Yi Yang  Huajun Feng 《Optik》2010,121(1):29-32
The shift of the emission band to longer wavelength (yellow-orange) of the Ba2MgSi2−xAlxO7: 0.1Eu2+ phosphor under the 350-450 nm excitation range has been achieved by adding the codoping element (Mn2+) in the host. The single-host silicate phosphor for WLED, Ba2MgSi2−xAlxO7: 0.1Eu2+, 0.1Mn2+ was prepared by high-temperature solid-state reaction. It was found experimentally that, its three-color emission peaks are situated at 623, 501 and 438 nm, respectively, under excitation of 350-450 nm irradiation. The emission peaks at 438 and 501 nm originate from the transition 5d to 4f of Eu2+ ions that occupy the two Ba2+ sites in the crystal of Ba2MgSi2−x AlxO7, while the 623 nm emission is attributed to the energy transfer from Eu2+ ions to Mn2+ ions. The white light can be obtained by mixing the three emission colors of blue (438 nm), green (501 nm) and red (623 nm) in the single host. When the concentrations of the Al3+, Eu2+ and Mn2+ ions were 0.4, 0.1 and 0.1 mol, respectively, the sample presented intense white emission. The addition of Al ion to the host leads to a substantial change of intensity ratio between blue and green emissions. White light could be obtained by combining this phosphor with 405 nm light-emitting diodes. The near-ultraviolet GaN-based Ba2MgSi1.7 Al0.3O7: 0.1Eu2+, 0.1Mn2+ LED achieves good color rendering of over 85.  相似文献   

4.
Sn1−xMnxO2 (x=0.01-0.05) thin films were synthesized on quartz substrate using an inexpensive ultrasonic spray pyrolysis technique. The influence of doping concentration and substrate temperature on structural and magnetic properties of Sn1−xMnxO2 thin films was systematically investigated. X-ray diffraction (XRD) studies of these films reflect that the Mn3+ ions have substituted Sn4+ ions without changing the tetragonal rutile structure of pure SnO2. A linear increase in c-axis lattice constant has been observed with corresponding increase in Mn concentration. No impurity phase was detected in XRD patterns even after doping 5 at% of Mn. A systematic change in magnetic behavior from ferromagnetic to paramagnetic was observed with increase in substrate temperature from 500 to 700 °C for Sn1−xMnxO2 (x=0.01) films. Magnetic studies reveal room-temperature ferromagnetism (RTFM) with 3.61×10−4 emu saturation magnetization and 92 Oe coercivity in case of Sn1−xMnxO2 (x=0.01) films deposited at 500 °C. However, paramagnetic behavior was observed for the films deposited at a higher substrate temperature of 700 °C. The presence of room-temperature ferromagnetism in these films was observed to have an intrinsic origin and could be obtained by controlling the substrate temperature and Mn doping concentration.  相似文献   

5.
Electron spin resonance spectra of Mn2+ in diluted solid solutions of MnO2 in Y2O3 have been studied at room temperature for Mn concentrations between 0.20 and 2.00 mol%. Isolated Mn2+ ions in sites with two different symmetries were observed, as well as Mn2+ ions coupled by the exchange interaction. The relative concentration of isolated to coupled Mn2+ ions decreases with increasing manganese concentration. The results are consistent with the assumption that the manganese ions occupy preferentially the C2 symmetry sites. A theoretical calculation based on this model yields an effective range of the exchange interaction between Mn2+ ions of 0.53 nm, of the same order as that of Mn2+ ions in CaO.  相似文献   

6.
Pristine spinel LiMn2O4 and LiAlxMn2−xO4 (x=Al: 0.00-0.40) with sub-micron sized particles have been synthesized using fumaric acid as chelating agent by sol-gel method. The synthesized samples were subjected to thermogravimetric analysis (TGA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and cyclic voltammetry (CV) and galvanostatic cycling studies. The TGA curve of the gel shows several weight-loss regions stepwise amounting to 55% till 800 °C attributed to the decomposition of the precursors. Calcination to higher temperatures (800 °C) yields pure-phase spinel (LiAlxMn2−xO4), as it is evident from the high-intensity XRD reflections matching to the standard pattern. SEM and TEM studies confirm that the synthesized grains are of uniform regular surface morphology. FT-IR studies show stretching and bending vibration bands of Li-O, Li-Al-Mn-O. LiAl0.1Mn1.90O4 spinel was found to deliver discharge capacity of 139 mA h/g during the first cycle with columbic efficiency of 97%. LiAl0.1Mn1.90O4 spinel exhibits the high cathodic peak current indicating better electrochemical performance. Low doping (x=0.1) of Al is found to be beneficial in stabilizing the spinel structure.  相似文献   

7.
ZnAl2O4:Mn green light emitting powder phosphors have been prepared by urea combustion technique involving furnace temperatures about 500 °C in a short time (<5 min). The prepared powders were characterized by X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectrometry and the surface area measurements by a Brunauer-Emmet-Teller (BET) adsorption isotherms. The EPR spectrum exhibits a resonance signal at g≈2.0, which shows a six-line hyperfine structure (hfs). From the EPR spectra the spin-Hamiltonian parameters have been evaluated at room temperature as well as at 110 K. EPR and photoluminescence (PL) studies revealed that manganese ions were present in divalent state and the site symmetry around Mn2+ ions is distorted tetrahedral. The spin concentration (N), the paramagnetic susceptibility (χ) and the zero-field splitting parameter (D) have been evaluated and discussed. The green emission at 511 nm in ZnAl2O4:Mn phosphor is assigned to a transition from the upper 4T16A1 ground state of Mn2+ ions.  相似文献   

8.
The structural and magnetic properties of Mn substituted Ni0.50−xMnxZn0.50Fe2O4 (where x=0.00, 0.10 and 0.20) sintered at various temperatures have been investigated thoroughly. The lattice parameter, average grain size and initial permeability increase with Mn substitution. Both bulk density and initial permeability increase with increasing sintering temperature from 1250 to 1300 °C and above 1300 °C they decrease. The Ni0.30Mn0.20Zn0.50Fe2O4 sintered at 1300 °C shows the highest relative quality factor and highest initial permeability among the studied samples. The initial permeability strongly depends on average grain size and intragranular porosity. From the magnetization as a function of applied magnetic field, M(H), it is clear that at room temperature all samples are in ferrimagnetic state. The number of Bohr magneton, n(μB), and Neel temperature, TN, decrease with increasing Mn substitution. It is found that Mn substitution in Ni0.50−xMnxZn0.50Fe2O4 (where x=0.20) decreases the Neel temperature by 25% but increases the initial permeability by 76%. Possible explanation for the observed characteristics of microstructure, initial permeability, DC magnetization and Neel temperature of the studied samples are discussed.  相似文献   

9.
NiAlxFe2−xO4 and Ni1−yMnyAl0.2Fe1.8O4 ferrites were prepared by the conventional ceramic method and were characterized by X-ray diffraction, scanning electron microscopy, and magnetic measurements. The single spinel phase was confirmed for all prepared samples. A proper explanation of data is possible if the Al3+ ions are assumed to replace Fe3+ ions in the A and B sites simultaneously for NiAlxFe2−xO4 ferrites, and if the Mn2+ ions are assumed to replace Ni2+ ions in the B sites for Ni1−yMnyAl0.2Fe1.8O4 ferrites. Microstructural factors play an important role in the magnetic behavior of Ni1−yMnyAl0.2Fe1.8O4 ferrites with large Mn2+ content.  相似文献   

10.
Transport properties and non-stoichiometry of La1−xCaxW1/6O2 and La1−yW1/6O2 (x=0, 0.005, 0.05; y=0.05, 0.1) have been characterized by means of impedance spectroscopy, the EMF-technique, H+/D+ isotope exchange, and thermogravimetry in the temperature range 300-1200 °C as a function of oxygen partial pressure and water vapor partial pressure. The materials exhibit mixed ionic and electronic conductivities; n- and p-type electronic conduction predominate at high temperatures under reducing and oxidizing conditions, respectively. Protons are the major ionic charge carrier under wet conditions and predominates the conductivity below ∼750 °C. The maximum in proton conductivity is observed for LaW1/6O2 with values reaching 3×10−3 S/cm at approximately 800 °C. The high proton conductivity for the undoped material is explained by assuming interaction between water vapor and intrinsic (anti-Frenkel) oxygen vacancies.  相似文献   

11.
Effects of Mn substitution for Co and Fe on the structural and magnetic properties of inverse-spinel CoFe2O4 have been investigated. MnxCo1−xFe2O4 and MnyCoFe2−yO4 thin films were prepared by a sol–gel method. The observed increase of the lattice constant of MnxCo1−xFe2O4 indicates that Mn2+ ions substitute the octahedral Co2+ sites. Conversion electron Mössbauer spectroscopy data indicate that a fraction of octahedral Co2+ ions exchange sites with tetrahedral Fe3+ ions through Mn doping. Vibrating-sample magnetometry data exhibit a large increase of saturation magnetization for both MnxCo1−xFe2O4 and MnyCoFe2−yO4 films compared to that of the CoFe2O4 film. Such enhancement of magnetization can be explained in terms of a breaking of ferrimagnetic order induced by the Co2+ migration.  相似文献   

12.
Li1 + x(Ni0.5Mn0.5)1  xO2 cathode material for Li-ion batteries has been prepared by a molten salt method using Li2CO3 salt. The influences of synthetic temperature and time have been intensively investigated. It is easy to obtain materials with a hexagonal α-NaFeO2 structure except broad peaks between 20° and 25°. Nickel in Li1 + x(Ni0.5Mn0.5)1  xO2 is oxidized to a trivalent state while manganese maintained a tetravalent state. It is found that the discharge capacities of all samples increase with cycling. The sample prepared at 850 °C for 5 h has a discharge capacity of 130 mAh g− 1 between 2.5 and 4.5 V versus VLi+/Li at a specific current of 0.13 mA cm− 2 after 50 cycles at 25 °C.  相似文献   

13.
The physical properties of Tb3+ ions substitution at A-site are investigated in the layered manganite La1.2Sr1.8Mn2O7. A series of La1.2−xTbxSr1.8Mn2O7 (x=0, 0.05, 0.15, and 0.20) shows that doping with a Tb ion of smaller radius in La1.2Sr1.8Mn2O7 caused diffraction peaks to shift to high angle. Some samples have an impure diffraction at about 30°, but all samples form single-phase. Samples can be well indexed on a Sr3Ti2O7-type tetragonal structure with the space group I4/mmm. According to the M-T curves, when x≤0.05, the series of samples shows ferromagnetism at low temperatures. With increasing temperature, they have two magnetic transitions at different temperatures. When x≥0.15, the magnetizations dramatically decrease. The ρ–T curves of samples show the metal–insulator transition for x=0, 0.05, and the maximum MR values in magnetic field 5 T are 74% at about 73 K and 94% at about 86 K. When x≥0.15, the samples remain in the insulator state in the whole observed temperature range, and the maximum MR values of 86% and 69% appeared at 74 K and 42 K.  相似文献   

14.
MnFe2O4 nanoparticles have been synthesized with a sol-gel method. Both differential thermal and thermo-gravimetric analyses indicate that MnFe2O4 nanoparticles form at 400 °C. Samples treated at 450 and 500 °C exhibit superparamagnetism at room temperature as implied from vibrating sample magnetometry. Mössbauer results indicate that as Mn2+ ions enter into the octahedral sites, Fe3+ ions transfer from octahedral to tetrahedral sites. When the calcination temperature increases from 450 to 700 °C, the occupation ratio of Fe3+ ions at the octahedral sites decreases from 43% to 39%. Susceptibility measurements versus magnetic field are reported for various temperatures (from 450 to 700 °C) and interpreted within the Stoner-Wohlfarth model.  相似文献   

15.
Single-phase polycrystalline samples of La0.67Ca0.33Mn1−xO3 (x=0.00, 0.02, 0.04, 0.06) have been prepared using the sol-gel method. The structure, magnetocaloric properties and the Curie temperature of the samples with different Mn vacancy concentrations have been investigated. The experimental results show that vacancy doping at the Mn-sites has a significant influence on the magnetic properties of La0.67Ca0.33Mn1−xO3. The Curie temperature decreases monotonically with increasing the Mn-site vacancy concentration x. A remarkable enhancement of the magnetic entropy change has been obtained in the La0.67Ca0.33Mn0.98O3 sample. The entropy change reaches |ΔSM|=3.10 J kg−1 K−1 at its Curie temperature (264 K) under an applied magnetic field H=10 kOe, which is almost the same value as that of pure Gd.  相似文献   

16.
XRD and residual surface stress (sin2 ψ) measurements were carried out on YBa2Cu3Ox superconductors with varying oxygen stoichiometry (6.3 < x < 7.0). Slopes of the surface strain versus sin2 ψ were plotted against oxygen content for certain reflections. Compressional surface stress has been found along the c-axis, while a tensile surface stress has been observed along the ab-plane. Both surface stresses were found to vary slightly with oxygen content. These findings qualitatively agree with a very small hydrostatic pressure effect on Tc for fully oxygenated YBa2Cu3Ox (x = 7) compared to oxygen deficient material at the surface.  相似文献   

17.
Six types of BiFeO3 ceramic samples, with subtle differences in synthesis conditions, were prepared. The comparison of their phases, electrical resistivity, and porosity revealed that the use of Bi2O3 and Fe2O3 powders of <1 μm size and a rapid liquid-phase sintering process of 855 °C for 5 min at 100 °C/s is beneficial to synthesize poreless single-phase BiFeO3 samples with high electrical resistivity of ∼5×1012 Ω cm. Deoxygenated BixFeyO1.5x+1.5yδ (xy, δ≥0) impurities were identified and found to be the main cause of low electrical resistivity and high porosity in the multi-phase samples. Large saturation polarization of 16.6 μC/cm2 and low leakage current density of 30 mA/m2, both at a high electric field of 145 kV/cm, were measured in the optimized single-phase samples at room temperature besides a large piezoelectric d33 coefficient of 27 pC/N and an obvious canted antiferromagnetic behavior.  相似文献   

18.
The synthesis of LaNi1−xMnxO3+δ samples with different oxygen contents has been performed. Structural characterization was carried out by X-ray and neutron powder diffraction. The crystallographic structure of stoichiometric samples, δ=0, evolves from an orthorhombic (LaMnO3) to a rhombohedral (LaNiO3) unit cell. Oxygen excess, δ>0, seems to stabilize the rhombohedral unit cell. For instance, the unit cells at room temperature are orthorhombic and rhombohedral for LaNi0.1Mn0.9O3.0 and LaNi0.1Mn0.9O3.13, respectively. The X-ray patterns show the coexistence of both phases for LaNi0.5Mn0.5O3+δ at room temperature. This coexistence is not ascribed to chemical inhomogeneities, but to a structural phase transition. Neutron patterns collected from 1.5 to 300 K show a continuous evolution except for LaNi0.5Mn0.5O3.08 and LaNi0.1Mn0.9O3.13, which show a phase transition at around 290 and 220 K, respectively. The neutron patterns suggest the presence of an ordered arrangement of Ni and Mn atoms in the crystallographic unit cell. Such arrangement indicates that LaNi0.5Mn0.5O3 could be considered as a double perovskite (nominal formula, La2NiMnO6).  相似文献   

19.
Nanocrystalline spinel ferrite thin films of CoxFe3−xO4 (x=0.3x=0.3, 0.5, 0.8, and 1.0) have been prepared by RF sputtering on quartz substrate without a buffer layer at room temperature and annealed at the temperature range from 200 to 600 °C in air. The as-sputtered films exhibit the preferred orientation and the high magnetization and coercivity. After annealing, the preferred orientations become poor, but the magnetization and coercivity increase. The sample with a magnetization of 455 emu/cm3, a coercivity of 2.8 kOe, a remanence ratio of 0.72, and a maximum energy product of 2.4 MGOe has been obtained. The influence of Co ions and annealing temperature on the magnetic properties has been discussed.  相似文献   

20.
Li0.5Fe2.5−xMnxO4 (0≦x≦1.0) powders with small and uniformly sized particles were successfully synthesized by microwave-induced combustion, using lithium nitrate, ferric nitrate, manganese nitrate and carbohydrazide as the starting materials. The process takes only a few minutes to obtain as-received Mn-substituted lithium ferrite powders. The resultant powders annealed at 650 °C for 2 h and were investigated by thermogravimeter/differential thermal analyzer (TG/DTA), X-ray diffractometer (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), and thermomagnetic analysis (TMA). The results revealed that the Mn content were strongly influenced the magnetic properties and Curie temperature of Mn-substituted lithium ferrite powder. As for sintered Li0.5Fe2.5−xMnxO4 specimens, substituting an appropriate amount of Mn for Fe in the Li0.5Fe2.5−xMnxO4 specimens markedly improved the complex permeability and loss tangent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号