首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanostructured titanium dioxide (ns-TiO2) films were grown by supersonic cluster beam deposition method. Transmission electron microscopy demonstrated that films are mainly composed by TiO2 nanocrystals embedded in an amorphous TiO2 phase while their electronic structure was studied by photoemission spectroscopy. The cluster assembled ns-TiO2 films are expected to exhibit several structural and chemical defects owing to the large surface to volume ratio of the deposited clusters. Ultraviolet photoemission spectra (hv = 50 eV) from the valence band unveil the presence of a restrained amount of surface Ti 3d defect states in the band gap, whereas Ti 2p core level X-ray photoelectron (hv = 630 eV) spectra do not manifestly disclose these defects.  相似文献   

2.
Results are presented of a photoemission study of the electronic structure of SiON layers formed by a pulsed-RF decoupled plasma nitration (DPN) of ultra-thin SiO2 grown base layers approximately 1.0 nm thick. The optical thickness of these device grade nitrided dielectric layers was in the range 1.4-1.6 nm. X-ray photoelectron spectroscopy (XPS) studies indicate that the nitrogen is incorporated in a single chemical environment at concentration levels in the range 15-17%. Angle resolved XPS measurements show that the nitrogen is distributed through the layer, with the binding energy of the N 1s peak at 398.3 eV which is indicative of a Si3N4-like chemical species in an oxide environment. High resolution core level photoemission studies of the spin orbit stripped Si 2p4+ peak revealed full width half maximum values in the range 1.4-1.55 eV, which are significantly larger than the 1.15 eV value reported for SiO2 layers. Synchrotron radiation photoemission studies of the valence band spectra enable the valence band off-set at the Si/SON interface to be evaluated as 2.3 eV and to infer a conduction band off-set of 2.1 eV.  相似文献   

3.
Density functional theory has been applied to a study of the electronic structure of the ideally-terminated, relaxed and H-saturated (0 0 0 1) surfaces of β-Si3N4 and to that of the bulk material. For the bulk, the lattice constants and atom positions and the valence band density of states are all in good agreement with experimental results. A band gap of 6.7 eV is found which is in fair accord with the experimental value of 5.1-5.3 eV for H-free Si3N4. Using a two-dimensionally-periodic slab model, a π-bonding interaction is found between threefold-coordinated Si and twofold-coordinated N atoms in the surface plane leading to π and π* surface-state bands in the gap. A surface-state band derived from s-orbitals is also found in the gap between the upper and lower parts of the valence band. Relaxation results in displacements of surface and first-underlayer atoms and to a stronger π-bonding interaction which increases the π-π* gap. The relaxed surface shows no occupied surface states above the valence band maximum, in agreement with recent photoemission data for a thin Si3N4 film. The π* band, however, remains well below the conduction band minimum (but well above the Fermi level). Adsorbing H at all dangling-bond sites on the ideally-terminated surface and then relaxing the surface and first underlayer leads to smaller, but still finite, displacements in comparison to the clean relaxed surface. This surface is more stable, by about 3.67 eV per H, than the clean relaxed surface.  相似文献   

4.
A comparative experimental study is presented of the electronic properties of MnSi films grown on Si(1 1 1) and of MnSi single crystals, using X-ray absorption spectroscopy (XAS), and core level and valence band photoemission spectroscopy (PES). No significant differences in the electronic structure of the two systems can be found.Absorption measurements on the Mn 2p threshold show a mixed valence ground state, where the multiplet structure is washed out by the hybridisation of the Mn 3d states with the Si sp states. These results are also confirmed by photoemission (PE) spectra from the valence band and the Mn 3s, 3p and 2p core levels.Strong attention has been paid to the effect of contamination. The occurrence of multiplet effects in the absorption spectra indicates unambiguously the localisation of the Mn 3d electrons in Mn-O bonds, which strongly influences the electronic properties of these systems.  相似文献   

5.
Electronic structure of the ternary GdNi4Si compound, crystallizing in hexagonal CaCu5 structure (P6/mmm space group) was studied by magnetic measurements, X-ray photoelectron spectroscopy (XPS) and ab initio calculations. Core levels and valence band were investigated. The valence band of the XPS spectra is determined mainly by the Ni(3d) and Gd(4f) bands. The peaks’ positions are in good agreement with binding energies of a metallic gadolinium and nickel. The experimental valence band spectrum as well as the calculated density of states exhibit the domination of the Ni(3d) states in region from −4 eV to the Fermi level.  相似文献   

6.
The electronic structure of single-crystalline CdO is investigated using X-ray photoemission spectroscopy. The surface is prepared by in situ Ar+ ion bombardment and annealing (IBA). The core level spectra before and after the IBA are presented, and reveal a dramatic reduction in the surface contamination. The semi-core Cd 4d level and valence band region following the IBA are also shown. The surface Fermi level is pinned 1.3±0.10 eV above the valence band maximum.  相似文献   

7.
The electronic structure and interfacial chemistry of thin manganese films on p-Si (1 0 0) have been studied by photoelectron spectroscopy measurements using synchrotron radiation of 134 eV and from X-ray diffraction data. The Mn/p-Si structures have been irradiated from swift heavy ions (∼100 MeV) of Fe7+ with a fluence of 1 × 1014 ions/cm2. Evolution of valence band spectrum with a sharp Fermi edge has been obtained. The observed Mn 3d peak has been related to the bonding of Mn 3d-Si 3sp states. Mn 3p (46.4 eV), Mn 3s (81.4 eV) and Si 2p (99.5 eV) core levels have also been observed which show a binding energy shift towards lower side as compared to their corresponding elemental values. From the photoelectron spectroscopic and X-ray diffraction results, Mn5Si3 metallic phase of manganese silicide has been found. The silicide phase has been found to grow on the irradiation.  相似文献   

8.
A single crystal monolith of La0.9Sr0.1FeO3 and thin pulsed laser deposited film of La0.8Sr0.2Fe0.8Ni0.2O3 were subject to angle integrated valence band photoemission spectroscopy in ultra high vacuum and conductivity experiments in ambient air at temperatures from 300 K to 800 K. Except for several sputtering and annealing cycles, the specimens were not prepared in situ. Peculiar changes in the temperature dependent, bulk representative conductivity profile as a result of reversible phase transitions, and irreversible chemical changes are semi-quantitatively reflected by the intensity variation in the more surface representative valence band spectra near the Fermi energy. X-ray photoelectron diffraction images reflect the symmetry as expected from bulk iron perovskites. The correlation of spectral details in the valence band photoemission spectra (VB PES) and details of the conductivity during temperature variation suggest that valuable information on electronic structure and transport properties of complex materials may be obtained without in situ preparation.  相似文献   

9.
Synchrotron radiation ultraviolet photoemission experiments at photon energies of 150 and 49 eV were performed on an epitaxial layer of (1 1 1) In2O3 with good crystallinity as established by a standard scanning probe and diffraction methods. Valence band (VB) and band gap photoemission spectra were monitored under separate oxygen, water and carbon monoxide exposures (100 L) at different activation temperatures within the range utilized for chemiresistive gas sensors (160-450 °C). Large changes in photoemission response within the whole VB were observed for all gases. Regular shifts of the valence band edge relative to the Fermi energy were found under gas exposures on two kinds of surface (partially reduced or partially oxidized), and are interpreted as changes of surface potential. Treatments in oxygen resulted in upward band bending (∼0.5 eV at T = 320 °C). Regardless of activation temperature, treatments in water resulted in downward band bending, but with small changes (<0.1 eV). Reduction properties of carbon monoxide were observed only at high temperatures of T ? 370 °C. At temperatures of 160 and 250 °C unusual “oxidizing” behavior of CO was observed with upward band bending of ∼0.7 eV (160 °C). Oxidizing and reducing effects of the gas interactions with the (1 1 1) In2O3 surface in all cases were accompanied by a corresponding behavior, i.e., a decrease or increase in photoemission response from so-called defect states in the band gap near the top of the valence band. The increases of photoemission within a band gap with maxima at binding energies (BE) of 0.4 (O2-induced peak) and 1.0 eV (CO-induced peak) were, respectively, found for interactions with O2 and CO for low temperatures (T = 160 and 250 °C). These responses were ascribed to acceptor-like electronic levels of O2 and CO chemisorption states, respectively. A definite split of the top VB peak (BE ∼ 4.0 eV) was found under CO dosing at 160 °C. Established knowledge of the CO interaction with the (1 1 1) In2O3 surface explains earlier revealed acceptor-like behavior of In2O3 film conductivity during CO detection at operational temperatures lower than 250 °C through the formation of acceptor-like electronic levels of adsorbed CO molecules.  相似文献   

10.
In this work we present the results of comparative XPS and PYS studies of electronic properties of the space charge layer of the L-CVD SnO2 thin films after air exposure and subsequent UHV annealing at 400 °C, with a special emphasis on the interface Fermi level position.From the centre of gravity of binding energy of the main XPS Sn 3d5/2 line the interface Fermi level position EF − Ev in the band gap has been determined. It was in a good correlation with the value estimated from the offset of valence band region of the XPS spectrum, as well as from the photoemission yield spectroscopy (PYS) measurements. Moreover, from the valence band region of the XPS spectrum and PYS spectrum two different types of filled electronic band gap states of the L-CVD SnO2 thin films have been derived, located at 6 and 3 eV with respect to the Fermi level.  相似文献   

11.
The surface electronic structure of cleaved single crystals of the organic superconductor κ-(ET)2Cu(NCS)2 has been studied using photoemission microscopy. Two types of cleaved surfaces were observed, displaying different valence band photoemission spectra and different spectral behavior near the Fermi level, EF. In particular, spectra from one surface type display relatively broad spectral features in the valence band and finite spectral intensity at EF, while spectra from the other surface type show well-defined valence band emission features and zero photoemission intensity at EF. We propose that the spectral differences are due to a very short electron mean free path in this material, and our results are used to explain the differences between previously published photoemission spectra from this superconductor. We also report the results of an investigation of the electronic structure of defects in this material.  相似文献   

12.
The electronic structure and chemical bonding in HgGa2S4 crystals grown by vapor transport method are investigated with X-ray photoemission spectroscopy. The valence band of HgGa2S4 is found to be formed by splitted S 3p and Hg 6s states at binding energies BE=3-7 eV and the components at BE=7-11 eV generated by the hybridization of S 3s and Ga 4s states with a strong contribution from the Hg 5d states. At higher binding energies the emission lines related to the Hg 4f, Ga 3p, S 2p, S 2s, Hg 4d, Ga LMM, Ga 3p and S LMM states are analyzed in the photoemission spectrum. The measured core level binding energies are compared with those of HgS, GaS, AgGaS2 and SrGa2S4 compounds. The valence band spectrum proves to be independent on the technological conditions of crystal growth. In contrast to the valence band spectrum, the distribution of electron states in the bandgap of HgGa2S4 crystals is found to be strongly dependent upon the technological conditions of crystal growth as demonstrated by the photoluminescence analysis.  相似文献   

13.
A. Bahari  Z.S. Li 《Surface science》2006,600(15):2966-2971
The growth of ultrathin films of Si3N4 directly on Si surfaces is studied with valence band photoemission. The information from these studies about the growth mechanism and the changes of the electronic structure is enhanced by the use of various photon energies with synchrotron radiation. The silicon nitride films are grown isothermally on the Si(1 0 0) and Si(1 1 1) surfaces by reactions with atomic N. The atomic nitrogen is produced by using a remote, microwave excited nitrogen plasma. The growth under these conditions was earlier shown to be self limiting. The details in the valence band spectra are identified and resolved with numerical methods, and followed systematically during the growth. Thus the identification of Si surface states, Si-nitride interface states and bulk nitride states becomes possible. The previously obtained separation between amorphous and crystalline growth occurring around 500 °C is further supported in the present studies.  相似文献   

14.
Ab initio density functional theory, using the B3LYP hybrid functional with all-electron basis sets, has been applied to the adsorption of H on the (0 0 0 1) surface of wurtzite GaN. For bulk GaN, good agreement is obtained with photoemission and X-ray emission data for the valence band and for the Ga 3d and N 2s shallow core levels. A band gap of Eg = 4.14 eV is computed vs the experimental value (at 0 K) of 3.50 eV. A simple model, consisting of a (2 × 2) structure with 3/4-monolayer (ML) of adsorbed H, is found to yield a density of states in poor agreement with photoemission data for H adsorbed on surfaces prepared by ion bombardment and annealing. A new model, consisting of co-adsorbed Ga (1/4 ML) and H (1/2 ML), is proposed to account for these data.  相似文献   

15.
We prepared α- and β surface phases of GaAs(0 0 1)-c(4 × 4) reconstruction by molecular beam epitaxy (MBE) using As4 and As2 molecular beams, respectively, and examined them by angle-resolved ultraviolet photoelectron spectroscopy (UPS) and X-ray photoelectron spectroscopy (XPS) with synchrotron radiation as an excitation source. The UPS valence band spectra and the XPS 3d core level data show pronounced differences corresponding to the surface composition and the atomic structure of the two phases, as proposed in the literature. In UPS, the β phase is characterized by an intensive surface state 0.5 eV below the top of the valence band at low photon energy, while an analogous peak in the α phase spectra is missing. The surface state is interpreted in terms of dangling bonds on As dimers. The As3d and Ga3d core level photoelectron lines exhibit phase-specific shapes as well as differences in the number, position and intensity of their deconvoluted components. The location of various atoms in the surface and subsurface layers is discussed; our photoemission results support models of the β phase and the α phase with As-As dimers and Ga-As heterodimers, respectively.  相似文献   

16.
The magnetic, electrical and electronic properties of the tetragonal ternary YbFe4Al8 compound have been investigated. This compound was supposed to be an antiferromagnetic superconductor due to the negative magnetization signal appearing at a low field of the field cooling mode, however, based on the measurements of the temperature dependence of magnetization and resistivity we do not confirm the presence of superconductivity in this material and we ascribe the negative magnetization to the complicated non-collinear magnetic structure. A switch to the antiferromagnetic order at about 150 K has been visible both on the M(T) and ρ(T) curves. The valence state of the Yb ions has been studied by X-ray photoemission spectroscopy. The valence band spectrum at the Fermi level exhibits the domination of the hybridized Yb(4f) and Fe(3d) states.  相似文献   

17.
Valence-band and conduction-band the electronic structure of the CrS (δ=0) and Cr5S6 (δ=0.17) has been investigated by means of photoemission and inverse-photoemission spectroscopies. The bandwidth of the valence bands of Cr5S6 (8.5 eV) is wider than that of CrS (8.1 eV), though the Cr 3d partial density of states evaluated from the Cr 3p-3d resonant photoemission spectroscopy is almost unchanged between the two compounds concerning shapes as well as binding energies. The Cr 3d (t2g) exchange splitting energies of CrS and Cr5S6 are determined to be 3.9 and 3.3 eV, respectively.  相似文献   

18.
Nickel was deposited on stoichiometric TiO2(1 1 0) surface in the 0.02–2.1 equivalent monolayer (eqML) range and analyzed by means of photoemission and resonant photoemission. In the case of very low coverage (lower than 0.1 eqML), deposited nickel reacts with the surface through an electronic transfer from nickel atoms towards titanium ions. This exchange caused the filling of unoccupied Ti3d states leading to the increase of a peak in the TiO2 band gap. These states can be better characterized through resonant photoemission experiments at the Ti 3p → 3d absorption edge: for very low coverage, these states in the TiO2 band gap have resonant behavior of Ti3d electrons rather than Ni3d ones, confirming the filling of Ti3d states and thus electron transfer between nickel and titanium. For coverage higher than 0.14 eqML, nickel peaks (both Ni3p core level and valence band) should be related to the presence of metallic nickel in small clusters.  相似文献   

19.
Measurements with photoemission spectroscopy in the photon-energy range 35–130 eV have been used to determine the valence band of the stable icosahedral Al65Cu20Os15. Resonant photoemission near the Os 5p 5d and 4f 5d transitions has been employed to show that the feature in the valence band with the maximum intensity at 1.5 (1) eV below the Fermi level is predominantly of the Os 5d character. This has been additionally verified by conducting the photoemission measurements in the constant-initial-state mode and by using the effect of the Cooper minimum in the photoionization cross section of the Os 5d orbitals. The valence band feature with the maximum intensity at 3.7 (1) eV below the Fermi level has been shown as being due mainly to the states of the Cu 3d character. The Os 5d and Cu 3d empirical partial density of states have been determined from the photoemission spectra. The decrease of intensity towards the Fermi level has been interpreted as being indicative of the presence of a theoretically predicted pseudogap around the Fermi level. It has been indicated, however, that the Fermi cut-off also contributes to the observed intensity decrease. It has been demonstrated that the energy resolution of the spectroscopic measurements performed so far on quasicrystals was not high enough to unambiguously determine the presence of such a pseudogap. No unusual features in the valence band of icosahedral Al65Cu20Os15, which could be ascribed to its quasiperiodic nature, have been observed within the resolution of the experiment. High energy-resolution spectroscopic measurements were also shown to be essential to observe the theoretically predicted spikiness of the density of states in quasicrystals. A critical review of published spectroscopic data on the electronic structure of quasicrystals has also been presented.  相似文献   

20.
We have investigated the Ce 4f electronic states in the Ce/Pd(1 1 1) and Ce-oxide/Pd(1 1 1) systems, using resonant photoemission (Ce 4d → 4f transitions), and XPS to understand Pd-Ce interactions in ultra thin layers of cerium and ceria deposited on Pd(1 1 1). Cerium deposited on Pd(1 1 1) at room temperature forms surface Ce-Pd alloys with Ce rich character, while a Pd rich Ce-Pd alloy is formed by heating to 700 °C. A modification of the chemical state of Ce can also be seen after oxygen exposure. RPES provides evidence that Ce-oxide layers deposited on Pd(1 1 1) have a CeO2 (Ce4+) character, however a net contribution of the Ce3+ states is also revealed. The Ce3+ states have surface character and are accompanied by oxygen vacancies. Heating to 600 °C causes Ce-oxide reduction. A significant shift of Pd 4d-derived states, induced by Pd 4d and Ce 4f hybridization, was observed. The resonant features in the valence band corresponding to Ce4+, Ce3+ and Ce0 states have been investigated for various Pd−Ce(CeOx) coverages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号