首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
X-ray diffraction on a langatate crystal (La3Ga5.5Ta0.5O14, LGT) modulated by a Λ=12 μm Rayleigh surface acoustic wave (SAW) was studied in a double axis X-ray diffractometer scheme at the BESSY synchrotron radiation source. SAW propagation in the crystal causes sinusoidal modulation of the crystal lattice and the appearance of diffraction satellites on the rocking curves, with their number, angular positions, and intensities depending on the wavelength and amplitude of acoustic vibrations of the crystal lattice. Strong absorption of X-ray radiation in LGT enables the observation of the diffraction spectra extinction at certain SAW amplitudes. X-ray diffraction spectra analysis makes it possible to determine SAW amplitudes and wavelengths, to measure the power flow angles, and investigate the diffraction divergence in acoustic beam in LGT.  相似文献   

2.
The characteristics of surface-acoustic-wave (SAW) devices on various substrates were measured by a network analyzer in the temperature range from 0 to 80 °C. Based on the structure of IDT/AlN/LiNbO3, it was revealed that the magnitude of the temperature coefficient of frequency (TCF) of a SAW on a LiNbO3 substrate was significantly decreased due to the thickness increase of AlN thin film deposited on the LiNbO3 substrate. The TCF of a SAW on an AlN/LiNbO3 device was measured to be about -51 ppm/°C at h/λ=0.1, where h is the thickness of the AlN film and λ is the wavelength of the SAW. This indicates that the deposition of an AlN film on a LiNbO3 substrate could improve the temperature stability, as compared with that of a SAW on a LiNbO3 substrate (-73 ppm/°C). The SAW device on the ST-X quartz is shown to have a positive TCF as the AlN thin film is deposited on the surface of the ST-X quartz. In addition, the phase velocity (Vp) of the SAW on an AlN/LiNbO3 substrate was significantly increased by the increase of AlN thickness (h/λ). Received: 14 October 2002 / Accepted: 15 October 2002 / Published online: 29 January 2003 RID="*" ID="*"Corresponding author. Fax: +886-7/525-4199, E-mail: ycc@ee.nsysu.edu.tw  相似文献   

3.
Simplified relations for the changes in SAW velocity and attenuation due to thin polymer coatings and vapor sorption are presented by making analytic approximations to the complex theoretical model developed earlier by Martin et al. [Anal. Chem. 66 (14) (1994) 2201–2219]. The approximate velocity relation is accurate within 4% for the film thicknesses up to 20% of the acoustic wavelength in the polymer film, and is useful for analyzing the mass loading, swelling and viscoelastic effects in SAW vapor sensors. The approximate attenuation relation is accurate within 20% for very thin films, (less than 2% of the acoustic wavelength in the film). Based on these relations, a new procedure for determination of polymer viscoelastic properties is described that exploits the frequency dependence of the velocity and attenuation perturbations, and employs multifrequency measurement on the same SAW platform. Expressions for individual contributions from the mass loading, film swelling and viscoelastic effects in SAW vapor sensors are derived, and their implications for the sensor design and operation are discussed. Also, a new SAW comb filter design is proposed that offers possibility for multimode SAW oscillator operation over a decade of frequency variation, and illustrates feasibility for experimental realization of wide bandwidth multifrequency SAW platforms.  相似文献   

4.
Ying Xu  Li-Ling Zhou 《Physics letters. A》2008,372(24):4465-4468
The transport properties of the six-atom carbon ring cluster C6 sandwiched between Al(100) electrodes have been investigated by first-principles nonequilibrium Green's function technique. Our results demonstrate that the transport properties of monocyclic C6 with D3h symmetry, with alternating bond angles, the most stable C6 isomer, show metallic conductance. The charge transfer between the central molecule and the electrodes is very important for its transport properties. We also compare the equilibrium transmission spectra for C6 in different isomers.  相似文献   

5.
研究了谐振式检测器谐振腔对声表面波气相色谱仪灵敏度的影响。构建无液膜负载和有液膜负载下压电基片和金属指条结构的三维有限元模型,利用有限元方法提取不同周期结构的耦合模参量,结合P矩阵级联技术,推导出传感器灵敏度随检测器腔体结构改变的变化关系。实验制备了两种三换能器结构的声表面波谐振器,其输入换能器与输出换能器间距离分别为22.25倍波长和1.25倍波长,通过测试甲基膦酸二甲酯气体,验证理论计算结果。结果表明:缩短谐振器的谐振腔长度使器件中心处能量更为集中,有效地提高了声表面波气相色谱仪灵敏度。  相似文献   

6.
Surface Acoustic Wave (SAW) pulses were excited in C60 films deposited on quartz and silicon substrates using pulses from excimer lasers with wavelengths of 248 nm and 308 nm for excitation. An optical beam-deflection technique and polymer electret transducers were utilized to detect the propagation of the SAW pulse with high spatial and temporal resolution, allowing an accuracy of better than 0.1% for SAW velocity measurements. With this technique the frequency dependence of the SAW velocity was determined for a number of fullerite films and density, as well as elastic bulk properties of the films were derived by a theoretical analysis of the dispersion effect.  相似文献   

7.
《Ultrasonics》2014,54(6):1504-1508
We describe the fabrication and frequency characterization of different structures intended for the lateral excitation of shear modes in AlN c-axis-oriented films. AlN films are deposited on moderately doped silicon substrates covered either with partially metallic or fully insulating Bragg mirrors, and on insulating glass plates covered with insulating acoustic reflectors. TiOx seed layers are used to promote the growth of highly c-axis oriented AlN films, which is confirmed by XRD and SAW measurements. The excitation of the resonant modes is achieved through coplanar Mo electrodes of different geometries defined on top of the AlN films. All the structures analyzed display a clear longitudinal mode travelling at 11,000 m/s, whose excitation is attributed to the direction of the electric field (parallel to the c-axis) below the electrodes; this is enhanced when a conductive plane (metallic layer or Si substrate) is present under the piezoelectric layer. Conversely, only a weak shear resonance (6,350 m/s) is stimulated through the effect of coplanar electrodes, which is explained by the weakness of the electric field strength parallel to the surface between the electrodes. A significantly more effective excitation of shear modes can be achieved by normal excitation of AlN films with tilted c-axis.  相似文献   

8.
Si-based metal–ferroelectric–semiconductor (MFS) structures without buffer layers between Si and ferroelectric films have been developed by depositing SrBi2Ta2O9 (SBT) directly on n-type (100)-oriented Si. Some effective processes are adopted to improve the electrical properties of these MFS structures. Contrary to the conventional MFS structures with top electrodes directly on ferroelectrics, our MFS structures have been developed with thin dense SiO2 films deposited between ferroelectric films and top electrodes. Due to the SiO2 films, the leakage current densities of MFS structures are reduced to 2×10-8 A/cm2 under the bias of 5 V. The C-V electrical properties of the MFS structures are greatly improved after annealing at 400 °C in N2 ambient for 1 h. The C-V memory windows are increased to 3 V, which probably results from the decrease of the interface trap density at the Si/SBT interface. Received: 7 September 1999 / Accepted: 24 November 1999 / Published online: 2 August 2000  相似文献   

9.
Combined electrochemical and dilatometry measurements were used to characterize the transport of hydrogen through thin RuO2 layers coated on palladium wire electrodes. Hydrogen dissolved in aqueous solutions penetrated through the oxide in a pH-dependent mechanism that combined diffusion of molecular hydrogen and pH-dependent proton hopping through redox sites within the oxide lattice. When cathodically charged, hydrogen was generated and absorbed at the oxide-solution interface only after Ru (IV) reduction occurs, and then, transported into the metal.  相似文献   

10.
The transport properties of cementitious composites such as concrete are important indicators of their durability, and are known to be heavily influenced by mechanical loading. In the current work, we use meso-scale hygro-mechanical modeling with a morphological 3D two phase mortar-aggregate model, in conjunction with experimentally obtained properties, to investigate the coupling between mechanical loading and damage and the permeability of the composite. The increase in permeability of a cylindrical test specimen at 28% aggregate fraction during a uniaxial displacement-controlled compression test at 85% of the peak load was measured using a gas permeameter. The mortar's mechanical behavior is assumed to follow the well-known compression damaged plasticity (CDP) model with isotropic damage, at varying thresholds, and obtained from different envelope curves. The damaged intrinsic permeability of the mortar evolves according to a logarithmic matching law with progressive loading. We fit the matching law parameters to the experimental result for the test specimen by inverse identification using our meso-scale model. We then subject a series of virtual composite specimens to quasi-static uniaxial compressive loading with varying boundary conditions to obtain the simulated damage and strain evolutions, and use the damage data and the previously identified parameters to determine the evolution of the macroscopic permeability tensor for the specimens, using a network model. We conduct a full parameter study by varying aggregate volume fraction, granulometric distribution, loading/boundary conditions and “matching law” parameters, as well as for different strain–damage thresholds and uniaxial loading envelope curves. Based on this study, we propose Avrami equation-based upper and lower bounds for the evolution of the damaged permeability of the composite.  相似文献   

11.
Roh Y  Lee S 《Ultrasonics》2004,42(1-9):413-416
We propose new structures of one-chip type SAW duplexers where Tx and Rx SAW ladder filters as well as isolation networks are fabricated together on a single 36 degrees LiTaO(3) piezoelectric substrate. The new SAW duplexer can overcome the difficulty in fabrication of conventional SAW duplexers while providing the performance matching that of conventional duplexers. Validity of the structure is verified through numerical simulation and experiments.  相似文献   

12.
We prepared in-situ Au contacts on high-quality epitaxial YBa2Cu3O7 (YBCO) films. Very high specific contact resistivity values up to ∼10−2 Ω cm2 at 4.2 K were obtained on 12×5 μm2 contact areas. This resistivity value decreased by two orders of magnitude as the temperature was raised to room temperature. In the temperature range T<200 K, the contacts showed non-ohmic behavior suggesting the presence of a well-defined insulating native Y-Ba-Cu-O barrier between the two electrodes. The electrical transport in this barrier layer was analyzed in the limit of high temperatures and high voltages to follow Mott's variable-range hopping conduction mechanism with physically reasonable parameters describing the localized states in the barrier. The high-resistivity contacts were tested successfully in quasiparticles injection experiments where the critical current Ic of the YBCO microbridge could be strongly suppressed on injection of an additional current through the contact into the superconducting channel.  相似文献   

13.
This study described relative humidity (RH) sensing using a graphene/128° YX LiNbO3 surface acoustic wave (SAW) device. The resonant frequency of the device decreased in a two-stage manner as the RH increased. For a low RH range (RH < 50%), a frequency downshift of 1.38 kHz per 1% RH change was observed. This was attributed to mass loading of the SAW propagation surface due to the adsorption of water molecules by the graphene surface. For a high RH range (RH > 50%), a frequency downshift of 2.6 kHz per 1% RH change was obtained, which was due to the change in elastic grapheme properties. The mass loading effect of the water layer was less effective at high temperature, resulting in a lower temperature coefficient of resonant frequency (TCF).  相似文献   

14.
High-performance supercapacitors with organic electrolyte 1 M TEABF4 (tetraethyl ammonium tetrafluoroborate) in PC (propylene carbonate) were fabricated and tested, based on multiwall carbon nanotubes (MWNTs) deposited by electrophoresis on three types of alternative substrates: aluminium foil, ITO (indium tin oxide) coated PET (polyethylene terephthalate) film and PET film. In all cases, SEM (scanning electron microscopy) and STEM (scanning transmission electron microscopy) micrographs demonstrated that protruding, transversely oriented MWNT structures were formed, which should increase the transverse conductivity of these MWNT electrodes. The best supercapacitor cell of MWNT electrodes deposited on aluminium foil displayed good transverse orientation of the MWNT structures as well as an in-plane MWNT network at the feet of the protruding structures, which ensured good in-plane conductivity. Capacitor cells with MWNT electrodes deposited either on ITO-coated PET film or on PET film demonstrated lower but still very good performance due to the high density of transversely oriented MWNT structures (good transverse conductivity) but some in-plane inhomogeneities. Capacitor cells with drop-printed MWNTs on aluminium foil, without any transverse orientation, had 16–30 times lower specific capacitance and 5–40 times lower power density than the capacitor cells with the electrophoretically deposited MWNT electrodes.  相似文献   

15.
We investigated the modulation of the optical properties of GaAs-based structures by a surface acoustic wave (SAW) by microscopic measurements of reflectance and photoluminescence. We demonstrate that for photon energies away from electronic resonances, the modulation of the optical properties is associated with the strain field of the SAW (elastooptical mechanism). Close to the E0 resonance, the electrooptical modulation due to the SAW piezoelectric fields becomes important and leads to a spatial modulation of the photoluminescence intensity.  相似文献   

16.
冉广照  陈源  陈开茅  张晓岚  刘鸿飞 《物理学报》2004,53(10):3498-3503
发展了恒温电容瞬态数据处理方法,称新方法为恒温电容瞬态时间积谱(ICTTS).用ICT TS方法测量分析了C70固体/p GaAs异质结的深能级,结果发现在C70固体中存在两个很深的空穴陷阱,H C1和H2,它们的能级位置分别为Ev+0856eV和 Ev+1037eV. 关键词: 70')" href="#">C70 深能级 恒温电容瞬态  相似文献   

17.
In a thin planar nematic cell, the application of an AC electric field induces a macroscopic transport of micrometer-sized colloidal particles along the nematic director. We have analyzed the dependence of particle velocities on the electric-field amplitude and frequency and found that it decreases exponentially with increasing frequency. Using specially designed electrodes we have observed that colloidal particles could be pumped and accelerated across the field-no-field interface, and measured the structural force and the corresponding potential, which is of the order of 10000 kBT for 4μm particles. We demonstrate that spatially periodic close-packed crystalline colloidal structures can be obtained, which are thermodinamically metastable for many days after turning off the electric field and slowly decay into linear chains. Above the nematic-isotropic phase transition, such crystalline structures are non-stable and decay in few minutes.  相似文献   

18.
We experimentally study the optical emission of a thin quantum well and its dynamic modulation by a surface acoustic wave (SAW). We observe a characteristic transition of the modulation from one maximum to two maxima per SAW cycle as the acoustic power is increased which we find in good agreement with numerical calculations of the SAW controlled carrier dynamics. At low acoustic powers the carrier mobilities limit electron-hole pair dissociation, whereas at high power levels the induced electric fields give rise to efficient acousto-electric carrier transport. The direct comparison between the experimental data and the numerical simulations provide an absolute calibration of the local SAW phase.  相似文献   

19.
Driven by the need for high data-rates and continuous reduction in device size, surface acoustic wave filters are required to work under increasingly high power. In this work, a series of 2.7 GHz surface acoustic wave filters with Al/Cu/Ti three-layered electrode were fabricated and loaded with high power. Those three-layered electrodes showed weaker texture but higher stability than Al-Cu alloy electrode at high power. Morphologies, microstructures and elements distribution in cross section of fingers were analyzed carefully before and after high power loading. Results show that the circular-arc-shaped outline of fingers were appeared in most samples after high power loading, and the number of gains in the finger cross section changed from some into several with much larger volume. The features of distribution of Cu atoms also coincided with these microstructures. By finite element method and phase diagram analysis, the higher stability of Al/Cu/Ti three-layered electrodes are attributed to precipitation of θ-CuAl2 in the bottom edge of electrode finger and Cu-doped α-Al in the center top.  相似文献   

20.
Au/Nb:SrTiO3/Ti structures were fabricated by depositing Au and Ti electrodes on a single crystal 0.5 wt% Nb:SrTiO3 (NSTO) using rf-magnetron sputtering technique. Resistive switching properties at different temperature were investigated. The Ti/NSTO interface was ohmic contact, which indicated that the resistive switching behavior was attributed to Au/NSTO interface. The resistive switching behavior happened only at the temperature above 180 K, which was possibly caused by the increase of Schottky barrier height with the increase of temperature. The structure showed a semiconductor behavior at high-resistance state (HRS) and a metallic behavior at low-resistance state (LRS). The switching conduction mechanism of Au/NSTO/Ti device is primarily described as space-charge-limited conduction (SCLC) according to the electrical transport properties measurement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号