首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface photovoltage (SPV) and photoelectron spectra (PES) of crystalline n-GaP wafers have been studied at 300 K. The magnitude of the surface potential (Vs) decreases in the presence of photons with energy more than the band gap, however the magnitude of Vs increases in the presence of photons with sub band gap energy. The SPV spectrum is helpful in understanding the rigid shift of PES spectra of n-GaP wafers towards higher kinetic energy in the presence of secondary white light from a tungsten lamp.  相似文献   

2.
The composition dependence of defect energies in polycrystalline Cu(In1-xGax)(Se1-ySy)2 chalcopyrite semiconductor thin films is investigated by admittance spectroscopy. Alloying CuInSe2 with S increases the energy of the dominant acceptor from 300 meV to approximately 380 meV in CuIn(Se0.4S0.6)2, whereas in the alloy system Cu(In1-xGax)Se2, the acceptor energy remains unchanged over the whole composition range 0≤x≤1. Using the acceptor energy as a reference, we extrapolate the valence-band offsets ΔEV=-0.23 eV for the combination CuInSe2/CuInS2 and ΔEV=-0.04 eV for CuInSe2/CuGaSe2. Received: 19 July 2001 / Accepted: 27 July 2001 / Published online: 2 October 2001  相似文献   

3.
Temperature-dependent photoluminescence (PL) from two multi-quantum well (MQW) structures with different barrier widths has been systematically investigated. The PL band in the well layers is dominated by localized excitons (LE), D0X, and D0X-1LO. As the temperature increases, luminescence from the excitons localized in the well layers shows an ‘S’-shaped shift in the thin barrier MQW whereas a monotonic redshift is observed from the thick barrier MQW. Quenching of well-related emission is associated with delocalization of the excitons in the potential minima induced by interface fluctuations or alloy disorder. The activation energies correlated with depths of the local potential are deduced to be 7 and 17 meV for the thick and thin barrier MQWs, respectively.  相似文献   

4.
N-ZnO/p-Si heterojunctions are prepared by sputtering deposition of intrinsic ZnO films on p-Si substrates. Thicknesses of ZnO films are altered by varying the deposition time from I h to 3h. The electrical properties of these structures are analysed from capacitance-voltage (C V) and current-voltage (I-V) characteristics performed in a dark room. The results demonstrated that all the samples show strong rectifying behaviour. Photovoltaie property for the samples with different thicknesses of ZnO films are investigated by measuring open circuit voltage and short circuit current. It is found that photovoltages are kept to be almost constant of 320 m V along with the thickness while photoeurrents changing a lot. The variation mechanism of the photovoltade effect as a function of thickness of ZnO films is investigated.  相似文献   

5.
Growth and properties of ZnO nanorod and nanonails by thermal evaporation   总被引:1,自引:0,他引:1  
ZnO nanorods and nanonails have been synthesized on silicon wafers by a three-step catalyst-free thermal evaporation method in oxygen atmosphere. All the samples were hexagonal phase ZnO with highly c-axis preferential orientation. Different morphologies of ZnO nanostructures, i.e. ZnO nanorods and two kinds of nanonails, were observed at various temperature regions. Photoluminescence, transmission electron microscopy, and energy-dispersive X-ray spectroscope were employed to elucidate the reason for the formation of such different rod-like structures. The analysis results demonstrated that the caps of nanonails possess a large number of oxygen vacancies, which may play a key role in determining the formation of nanonails and the high intensity of green emission.  相似文献   

6.
P-n junctions of silicon-wedge microcontacts with variable constrictions down to 0.1 m diameter exhibit current transport behavior completely different from the conventional large-area junctions. Generation and recombination dominate for junctions larger than 1 m diameter; smaller junctions show a predominance of space charge and resistive effects.  相似文献   

7.
Relaxation semiconductors are materials dominated by free carrier transport and defined by the condition that the dielectric relaxation time D is longer than the free carrier lifetime 0. Novel transport behavior has been demonstrated, both theoretically and experimentally, to be associated with this regime of semiconductor behavior. This review surveys the history of the field, emphasizes recent experimental and modeling work and summarizes our current understanding of relaxation behavior in crystalline semiconductors.Dedicated to H.-J. Queisser on the occasion of his 60th birthday  相似文献   

8.
Chemistry, electronic structure and electrical behavior at the interfaces between copper phthalocyanine (CuPc) and Mg with a reverse formation sequence were investigated using X-ray photoemission spectroscopy (XPS), ultraviolet photoemission spectroscopy (UPS), and current-voltage (I-V) measurements. A chemical reaction occurs between CuPc and Mg irrespective of the deposition sequence. Despite having different reaction zone thicknesses, both the CuPc-on-Mg and the Mg-on-CuPc interfaces exhibit chemistry-induced gap states and identical carrier injection barriers, which are confirmed by the symmetric electrical behavior obtained from I-V characteristics of devices with a structure of Mg/CuPc/Mg. These findings contrast with those expected from physisorptive noble metal-CuPc interfaces and suggest that strong local chemical bonding is a primary factor determining molecular level alignment at reactive metal-CuPc interfaces.  相似文献   

9.
An electrical pulse induced resistance switching effect in ZnO/Nb-doped SrTiO3 heterojunctions is reported. The current-voltage curves of these junctions show hysteresis. Multi-resistance states are realized by applying voltage pulses with different amplitudes, and the resistance switching effect is more remarkable at low temperatures. The junction capacitance decreases dramatically with increasing frequency. Analysis of the results suggests that the trapping-detrapping process plays an important role in the resistance switching effect.  相似文献   

10.
Pulsed Laser-Induced Epitaxy (PLIE)/Gas Immersion Laser Doping (GILD) offers several advantages over alternative epitaxial processes, especially because the process can be made spatially selective. Here, a pulsed XeCl excimer laser is used to grow poly-Si1–xGex layers with Ge fractions up to 30% by intermixing a structure of electron beam-evaporated a-Ge on poly-Si deposited on quartz. Arsenic or boron dopant is incorporated during the melt process by using, respectively, an AsF5 or BF3 gas ambient. RBS and SIMS analysis reveal that the Ge metallurgical depth, the dopant junction depth and the incorporated dopant dose scale with the laser energy density and the number of laser pulses. The sheet resistance values reached after GILD process are low enough to be suitable for the fabrication of source and drain for poly-SiGe TFTs.  相似文献   

11.
We present a study of the electronic properties of the interface between the well-established molecular organic semiconductor copper phthalocyanine (CuPc) and the fullerite C60 using photoelectron spectroscopy and the Kelvin-probe (KP) method. Upon deposition of CuPc on C60, we found interfacial shifts of the vacuum level indicating the formation of a dipole layer, while band bending is found to be negligible. The interface dipole of 0.5 eV measured with KP is close to the difference between the work functions of bulk CuPc and C60. No evidence for a chemical interaction at the interface is concluded from the absence of additional features in the core-level spectra at the earliest stages of deposition. The energy-level alignment diagram at the CuPc/C60 interface is derived.  相似文献   

12.
A two-step pulsed UV-laser process which independently controls the metallurgical and electrical junction depth of a Si1–x Ge x /Si heterojunction diode has been implemented. Pulsed Laser-Induced Epitaxy (PLIE) combined with Gas-immersion Laser Doping (GILD) are used to fabricate boron-doped heteroepitaxial p +/N Si1–x Ge x /Si layers and diodes. Borontrifluoride is used as the gaseous dopant source in the GILD process step. Boron incorporation and activation are investigated as a function of laser energy fluence and the number of laser pulses using SIMS and Halleffect measurements. The dose of incorporated dopant is on the order of 1013 cm–2 per pulse. The B profiles obtained are flat except for a peak at the interface resulting from segregation effects. The B and Ge distributions are compared with shifts in the turn-on voltage of p +/N Si1–x /Si heterojunction diodes produced by the process. The GILD/PLIE process is spatially selective with the resulting diodes fabricated being quasiplanar. Hole mobilities in the heavily doped Si1–x Ge x films are found to be slightly lower than in comparable Si films.Presently at the Oregon Graduate Institute, Beaverton, OR 97006, USA  相似文献   

13.
The current-voltage (I-V) characteristics of Al/Rhodamine-101/p-Si/Al contacts have been measured at temperatures ranging from 280 to 400 K at 20 K intervals. A barrier height (BH) value of 0.817 eV for the Al/Rh101/p-Si/Al contact was obtained at the room temperature that is significantly larger than the value of 0.58 eV of the conventional Al/p-Si Schottky diode. While the barrier height Φb0 decreases the ideality factors (n) become larger with lowering temperature. The high values of n depending on the sample temperature may be ascribed to decrease of the exponentially increase rate in current due to space-charge injection into Rh101 thin film at higher voltage. Therefore, at all temperatures, it has been seen that the I-V characteristics show three different regions, the ohmic behavior at low voltages, and the space charge limited current with an exponential distribution of traps at high voltages.  相似文献   

14.
Thin-film light emitting devices based on organic materials have been gathering attentions for applying a flat-panel display and a solid-state lighting. Alternatively, inorganic technologies such as Si-based thin-film technology have been growing almost independently. It is then expected that combining the Si-based thin-film technology with the organic light emitting diode (OLED) technology will develop innovative devices. Here, we report syntheses of the hybrid light emitting diode (LED) with a heterostructure consisting of p-type SiCx and tris-(8-hydroxyquinoline) aluminum films and characterization for the hybrid LEDs. We present the energy diagram of the heterostructure, and describe that the use of high dark conductivities of the p-type SiCx as well as inserting wide-gap intrinsic a-SiCx at the p-type SiCx/Alq interface are effective for improving device performance.  相似文献   

15.
Some examples of interface studies are reported which show their close link with progress in III–V modern semiconductor device physics and technology. The surface electronic properties investigated in-situ by reflectance anisotropy spectroscopy during InGaP/InP growth (metal-organic vapor-phase epitaxy) are essential for the control of ordering phenomena in these layers, which is relevant for high-performance optoelectronic devices. Studies of electronic interface states at metal/narrow-gap III–V semiconductors are presented, which enabled the successful preparation of semiconductor/superconductor hybrid devices. For group-III nitrides with wurtzite structure the presence of fixed polarization interface charges yields new challenges in order to understand and control Schottky-barrier heights, band offsets and 2D confinement in heterostructure field-effect transistors. Received: 26 April 2001 / Accepted: 23 July 2001 / Published online: 3 April 2002  相似文献   

16.
We have succesfully investigated emissive interface states in fabricated indium‐tin‐oxide (ITO)/N,N′‐di‐1‐naphthyl‐N,N′‐diphenyl‐1,1′‐biphenyl‐4,4′diamine (α‐NPD)/tris(8‐hydroxyquinoline) aluminum (Alq3)/LiF/Al organic light‐emitting diodes (OLEDs) by a modified deep‐level optical spectroscopy (DLOS) technique. In the vicinity of the α‐NPD/Alq3 emissive interface, a discrete trap level was found to be located at ~1.77 eV below the conduction band of Alq3, in addition to band‐to‐band transitions of carriers from α‐NPD to Alq3. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
X-ray photoelectron spectroscopy has been used to measure the valence band offset (VBO) at the GaN/Ge heterostructure interface. The VBO is directly determined to be 1.13 ±0.19 eV, according to the relationship between the conduction band offset AEc and the valence band offset △Ev:△Ec =EgGaN -EgGe - △Ev, and taking the room-temperature band-gaps as 3.4 and 0.67eV for GaN and Ge, respectively. The conduction band offset is deduced to be 1.6±0.19 eV, which indicates a type-I band alignment for GaN/Ge. Accurate determination of the valence and conduction band offsets is important for the use of GaN/Ge based devices.  相似文献   

18.
We present a new technique to achieve uniform lateral electric field and maximum breakdown voltage in lateral double-diffused metal-oxide-semiconductor transistors fabricated on silicon-on-insulator substrates. A linearly increasing drift-region thickness from the source to the drain is employed to improve the electric field distribution in the devices. Compared to the lateral linear doping technique and the reduced surface field technique, twodimensional numerical simulations show that the new device exhibits reduced specific on-resistance, maximum off- and on-state breakdown voltages, superior quasi-saturation characteristics and improved safe operating area.  相似文献   

19.
N-doped p-type ZnO (p ∼ 1018cm-3) was grown on sapphire(0 0 0 1) substrate by metal-organic chemical vapor deposition method. Ni/Au metal was evaporated on the ZnO film to form contacts. As-deposited contacts were rectifying while ohmic behavior was achieved after thermally annealing the contacts in nitrogen environment. Specific contact resistance was determined by circular transmission line method and a minimum specific contact resistance of 8 × 10−4 Ω cm2 was obtained for the sample annealed at 650 °C for 30 s. However, Hall effect measurements indicate that, as the rapid thermal annealing temperature increased up to 550 °C or higher the samples’ conductive type have changed from p-type to n-type, which may be due to the instability nature of the present-day p-type N-doped ZnO or the dissociation of ZnO caused by annealing process in N2 ambient. Evolution of the sample's electric characteristics and the increment of metal/semiconductor interface states induced by rapid thermal annealing process are supposed to be responsible for the improvement of electrical properties of Au/Ni/ZnO.  相似文献   

20.
The application of core and valence level photoelectron spectroscopy to the study of semiconductor heterojunctions and metal-semiconductor interfaces (Schottky barriers) is outlined, with an emphasis on recent results and their explanation in terms of current theories. While the determination of transport barriers (valence band offsets and Schottky barriers) is stressed, the identification of chemical reactions at the interface is also discussed using several examples. Photoemission can precisely determine many important quantities in these junctions; also demonstrated, however, is the disturbing influence of the photoemission process itself through the creation of a surface photovoltage in metal-semiconductor interfaces, and its possible consequences for recent investigations of Schottky barrier heights in metal overlayers on low temperature substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号