首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
N-type Bi2Te2.7Se0.3 thermoelectric thin films with thickness 800 nm have been deposited on glass substrates by flash evaporation method at 473 K. Annealing effects on the thermoelectric properties of Bi2Te2.7Se0.3 thin films were examined in the temperature range 373-573 K. The structures, morphology and chemical composition of the thin films were characterized by X-ray diffraction, field emission scanning electron microscope and energy dispersive X-ray spectroscopy, respectively. Thermoelectric properties of the thin films have been evaluated by measurements of the electrical resistivity and Seebeck coefficient at 300 K. The Hall coefficients were measured at room temperature by the Van der Pauw method. The carrier concentration and mobility were calculated from the Hall coefficient. The films thickness of the annealed samples was measured by ellipsometer. When annealed at 473 K, the electrical resistivity and Seebeck coefficient are 2.7 mΩ cm and −180 μV/K, respectively. The maximum of thermoelectric power factor is enhanced to 12 μW/cm K2.  相似文献   

2.
Pure VO2 and VO2-WO3 composite thin films were grown on quartz substrate by pulsed laser deposition (PLD) technique. The influence of varying WO3 molar concentration in the range from x = 0.0 to x = 0.4 on structural, electrical and optical properties of VO2-WO3 nanocomposite thin films has been systematically investigated. X-ray diffraction studies reveal the single crystalline monoclinic VO2 phase (m-VO2) up to 10% of WO3 content whereas both m-VO2 as well as h-WO3 (hexagonal WO3) phases were present at higher WO3 content (0.2 ≤ x ≤ 0.4). Optical transmittance spectra of the films showed blue shift in the absorption edge with increase in WO3 content. Temperature dependence of resistivity (R-T) measurements indicates significant variation in metal-insulator transition temperature, width of the hysteresis, and shape of the hysteresis curve. Cyclic Voltammetry measurements were performed on VO2-WO3 thin films. A direct correlation between V/W ratio and structure-property relationship was established. The present investigations reveal that doping of WO3 in VO2 is effective to increase the optical transmittance and to reduce the semiconductor to metal phase transition temperature close to room temperature.  相似文献   

3.
Pure TiO2 and nitrogen doped titanium dioxide (N-TiO2) thin films were prepared by sol-gel method through spin coating on soda lime glass substrates. TiCl4 and urea were used as Ti and N sources in the sol. XRD results showed nitrogen doping has retarded anatase to rutile phase transformation. The doping also leads to a decrease in roughness of the samples from 4 nm (TiO2) to 1 nm (N-TiO2). However, surface analysis by statistical methods reveals that both surfaces have self-affine structure. Optical band gap of thin films was shifted from 3.65 eV (TiO2) to 3.47 eV (N-TiO2). Hydrophilic conversion and photocatalytic degradation properties of thin films were investigated and exhibited that N-TiO2 thin film has more preferable hydrophilicity and photocatalytic properties under UV illumination.  相似文献   

4.
CdS doped TiO2 thin films (with CdS content=0, 3, 6, 9 and 12 at%) were grown on glass substrates. The X-ray diffraction analysis revealed that the films are polycrystalline of monoclinic TiO2 structure. The microstructure parameters of the films such as crystallite size (Dν) and microstrain (e) are calculated. Both the crystallites size and the microstrain are decreased with increasing CdS content. The optical constants have been determined in terms of Murmann's exact equations. The refractive index and extinction coefficient are increased with increasing CdS content. The optical band gap is calculated in the strong absorption region. The possible optical transition in these films is found to be an allowed direct transition. The values of Egopt are found to decrease as the CdS content increased. The films with 3 at% CdS content have better decomposition efficiency than undoped TiO2. The films with 6 at% and 9 at% CdS content have decomposition efficiency comparable to that of undoped TiO2, although they have lower band gap. The CdS doped TiO2 could have a better impact on the decomposing of organic wastes.  相似文献   

5.
Pure and WO3 doped CeO2-PbO-B2O3 glasses are prepared by the melt-quench technique. The structural and optical analyses of glasses are carried out by XRD, FTIR, density and UV-vis spectroscopic measurement techniques. FTIR analysis indicates the transformation of structural units of BO3 into BO4 with W-O-W vibration and the presence of WO4 and WO6 units observed with increase in WO3 contents. Decrease in band gap for CeO2-PbO-B2O3 glasses from 2.89 to 2.30 eV and for WO3 doped glasses from 2.89 to 1.95 eV has been observed and discussed. This decrease in band gap with WO3 doping approaches to semiconductor behavior. It shows that the presence of WO3 in the glass samples causes more compaction of the borate network due to the formation of BO4 groups and the presence of WO4 and WO6 groups, which result in a decrease in the optical band gap energy and increase in the density.  相似文献   

6.
TiO2 thin films with novel nanocoral-like morphology were successfully grown directly onto the glass and conducting fluorine doped tin oxide coated glass substrates via multi-step hydrothermal (MSH) process. Titanium chloroalkoxide [TiCl2 (OEt)2 (HOEt)2)] precursor was used in an aqueous saturated NaCl in presence of 1 mM HCl catalyst and HNO3 peptizer at 120 °C. Reaction time varied from 3 to 12 h. The morphological features and physical properties of TiO2 films were investigated by field emission scanning electron microscopy, high resolution transmission electron microscopy, X-ray diffraction, Fourier transform IR spectroscopy, Fourier transform Raman spectroscopy, room temperature photoluminescence spectroscopy and X-ray photoelectron spectroscopy. The surface morphology revealed the formation of TiO2 corals having nanosized (30-40 nm) polyps. The photoelectrochemical properties of the TiO2 nanocoral electrodes were investigated in 0.1 M NaOH electrolyte under UV illumination. The results presented in this study highlight two major findings: (i) ability to tune the photoelectrochemical response and photoconversion efficiency via controlled thickness of TiO2 nanocorals and (ii) the substantial increase in short circuit photocurrent (Jsc) due to the improved charge transport through TiO2 nanocorals prepared via MSH process. This approach would be quite useful for the fabrication of nanocoral architecture that finds key applications in photocatalysis, dye-sensitized solar cells and hybrid solar cells.  相似文献   

7.
The present investigation is related to the deposition of single-phase nano-sheets spinel nickel ferrite (NiFe2O4) thin films onto glass substrates using a chemical method. Nano-sheets nickel ferrite films were deposited from an alkaline bath containing Ni2+ and Fe2+ ions. The films were characterized for their structural, surface morphological and electrical properties by means of X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and two-point probe electrical resistivity techniques. The X-ray diffraction pattern showed that NiFe2O4 nano-sheets are oriented along (3 1 1) plane. The FT-IR spectra of NiFe2O4 films showed strong absorption peaks around 600 and 400 cm−1 which are typical for cubic spinel crystal structure. Microstructural study of NiFe2O4 film revealed nano-sheet like morphology with average sheet thickness of 30 nm. The room temperature electrical resistivity of the NiFe2O4 nano-sheets was 107 Ω cm.  相似文献   

8.
Daeil Kim 《Optics Communications》2010,283(9):1792-1794
Au-intermediate TiO2/Au/TiO2 (TAT) multilayer films were deposited by RF magnetron sputtering onto glass substrates. Changes in the optical and electrical properties of the films were investigated with respect to the thickness of the Au interlayer.The observed optical and electrical properties were dependent on the thickness of the Au interlayer. The resistivity decreased to 3.3 × 10−4 Ω cm for TiO2 films with a 20 nm-thick Au interlayer and the optical transmittance was also influenced by the Au interlayer. Although optical transmittance deteriorated as Au thickness increased, TiO2 films with a 5 nm-thick Au interlayer showed a relatively high optical transmittance of 80% at a wavelength of 550 nm. In addition, since a TAT film with a 5 nm-thick Au interlayer showed a relatively high work function value, it is an alternative candidate for use as a transparent anode in OLEDs and flat panel displays.  相似文献   

9.
In this work, we report the formation of CuInS2 thin films on glass substrates by heating chemically deposited multilayers of copper sulfide (CuS) and indium sulfide (In2S3) at 300 and 350 °C in nitrogen atmosphere at 10 Torr. CIS thin films were prepared by varying the CuS layer thickness in the multilayers with indium sulfide. The XRD analysis showed that the crystallographic structure of the CuInS2 (JCPDS 27-0159) is present on the deposited films. From the optical analysis it was estimated the band gap value for the CIS film (1.49 eV). The electrical conductivity varies from 3 × 10−8 to 3 Ω−1 cm−1 depending on the thickness of the CuS film. CIS films showed p-type conductivity.  相似文献   

10.
Titanium dioxide (TiO2) thin films doping of various iron ion (Fe3+) concentrations were deposited on silicon (Si) (100) and quartz substrates by sol-gel Spin Coating technique followed by a thermal treatment at 600 °C. The structure, surface morphology and optical properties, as a function of the doping, have been studied by X-ray diffractometer (XRD), Raman, ultraviolet-visible (UV-vis) and Spectroscopic Ellipsometry (SE). XRD and Raman analyzes of our thin films show that the crystalline phase of TiO2 thin films comprised only the anatase TiO2, but the crystallinity decreased when the Fe3+ content increased from 0% to 20%. During the Fe3+ addition to 20%, the phase of TiO2 thin film still maintained the amorphous state. The grain size calculated from XRD patterns varies from 29.3 to 22.6 nm. The complex index and the optical band gap (Eg) of the films were determined by the spectroscopic ellipsometry analysis. We have found that the optical band gap decreased with an increasing Fe3+ content.  相似文献   

11.
Cr doped TiO2-SiO2 nanostructure thin film on glass substrates was prepared by a sol-gel dip coating process. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to characterize the structural and chemical properties of the films. A UV-vis spectrophotometer was used to measure the transmittance spectra of the thin film. The hydrophilicity of the thin film during irradiation and storage in a dark place was measured by a contact angle analyzer. The results indicated that Cr doping has a significant effect on the transmittance and super-hydrophilicity of TiO2-SiO2 thin film.  相似文献   

12.
In this study, TiO2−xNx/TiO2 double layers thin film was deposited on ZnO (80 nm thickness)/soda-lime glass substrate by a dc reactive magnetron sputtering. The TiO2 film was deposited under different total gas pressures of 1 Pa, 2 Pa, and 4 Pa with constant oxygen flow rate of 0.8 sccm. Then, the deposition was continued with various nitrogen flow rates of 0.4, 0.8, and 1.2 sccm in constant total gas pressure of 4 Pa. Post annealing was performed on as-deposited films at various annealing temperatures of 400, 500, and 600 °C in air atmosphere to achieve films crystallinity. The structure and morphology of deposited films were evaluated by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and atomic force microscopy (AFM). The chemical composition of top layer doped by nitrogen was evaluated by X-ray photoelectron spectroscopy (XPS). Photocatalytic activity of samples was measured by degradation of Methylene Blue (MB) dye. The optical transmittance of the multilayer film was also measured using ultraviolet-visible light (UV-vis) spectrophotometer. The results showed that by nitrogen doping of a fraction (∼1/5) of TiO2 film thickness, the optical transmittance of TiO2−xNx/TiO2 film was compared with TiO2 thin film. Deposited films showed also good photocatalytic and hydrophilicity activity at visible light.  相似文献   

13.
Aluminum doped zinc oxide (AZO) films were substitutes of the SnO2:F films on soda lime glass substrate in the amorphous thin-film solar cells due to good properties and low cost. In order to improve properties of AZO films, the TiO2 buffer layer had been introduced. AZO films with and without TiO2 buffer layer were deposited on soda lime glass substrates by r.f. magnetron sputtering. Subsequently, one group samples were annealed in vacuum (0.1 Pa) at 500 °C for 120 s using the RTA system, and the influence of TiO2 thickness on the properties of AZO films had been discussed. The XRD measurement results showed that all the films had a preferentially oriented (0 0 2) peak, and the intensity of (0 0 2) peak had been enhanced for the AZO films with TiO2 buffer layer. The resistivity of TiO2 (3.0 nm)/AZO double-layer film is 4.76×10−4 Ω cm with the maximum figure merit of 1.92×10−2 Ω−1, and the resistivity has a remarkable 28.7% decrease comparing with that of the single AZO film. The carrier scattering mechanism of TiO2 (3.0 nm)/AZO double-layer film had been described by Hall measurement in different temperatures. The average transmittance of all the films exceeded 92% in the visible spectrum. Another group samples were heat treated in the quartz tube in air atmosphere, and the effect of TiO2 thickness on thermal stability of AZO films had been discussed.  相似文献   

14.
Novel Pd/InVO4-TiO2 thin films with visible light photocatalytic activity were synthesized from the Pd and InVO2 co-doped TiO2 sol via sol-gel method. The photocatalytic activities of Pd/InVO4-TiO2 thin films were investigated based on the oxidative decomposition of methyl orange in aqueous solution. The as-prepared samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and UV-vis absorption spectroscopy (UV-vis). The results indicate that the Pd/InVO4-TiO2 thin films are compact, uniform and consist of sphere nanoparticles with diameters about 80-100 nm. The UV-vis spectra show that the Pd/InVO4-TiO2 thin films extend the light absorption spectrum toward the visible region. XPS results reveal that doped Pd exist in the form of metallic palladium. The photocatalytic experiments demonstrate that Pd doping can effectively enhance the photocatalytic activities of InVO4-TiO2 thin films in decomposition of aqueous methyl orange under visible light irradiation. It has been confirmed that Pd/InVO4-TiO2 thin films could be excited by visible light (E < 3.2 eV) due to the existence of the Pd and InVO4 doped in the films.  相似文献   

15.
Silver antimony selenide (AgSbSe2) thin films were prepared by heating sequentially deposited multilayers of antimony sulphide (Sb2S3), silver selenide (Ag2Se), selenium (Se) and silver (Ag). Sb2S3 thin film was prepared from a chemical bath containing SbCl3 and Na2S2O3, Ag2Se from a solution containing AgNO3 and Na2SeSO3 and Se thin films from an acidified solution of Na2SeSO3, at room temperature on glass substrates. Ag thin film was deposited by thermal evaporation. The annealing temperature was 350 °C in vacuum (10−3 Torr) for 1 h. X-ray diffraction analysis showed that the thin films formed were polycrystalline AgSbSe2 or AgSb(S,Se)2 depending on selenium content in the precursor films. Morphology and elemental analysis of these films were done using scanning electron microscopy and energy dispersive X-ray spectroscopy. Optical band gap was evaluated from the UV-visible absorption spectra of these films. Electrical characterizations were done using Hall effect and photocurrent measurements. A photovoltaic structure: glass/ITO/CdS/AgSbSe2/Al was formed, in which CdS was deposited by chemical bath deposition. J-V characteristics of this structure showed Voc = 435 mV and Jsc = 0.08 mA/cm2 under illumination using a tungsten halogen lamp. Preparation of a photovoltaic structure using AgSbSe2 as an absorber material by a non-toxic selenization process is achieved.  相似文献   

16.
Highly textured bismuth oxide (Bi2O3) thin films have been prepared using anodic oxidation of electrodeposited bismuth films onto stainless steel substrates. The Bi2O3 films were uniform and adherent to substrate. The Bi2O3 films were characterized for their structural and electrical properties by means of X-ray diffraction (XRD), electrical resistivity and dielectric measurement techniques. The X-ray diffraction pattern showed that Bi2O3 films are highly textured along (1 1 1) plane. The room temperature electrical resistivity of the Bi2O3 films was 105 Ω cm. Dielectric measurement revealed normal oxide behavior with frequency.  相似文献   

17.
Pb(Zr0.52Ti0.48)O3 (PZT) thin films with large remanent polarization and SrBi2Ta2O9 (SBT) thin films with excellent fatigue-resisting characteristic have been widely studied for non-volatile random access memories, respectively. To combine these two advantages, bilayered Pb(Zr0.52Ti0.48)O3/SrBi2Ta2O9 (PZT/SBT) thin films were fabricated on Pt/TiO2/SiO2/Si substrates by chemical solution deposition method. X-ray diffraction patterns revealed that the diffraction peaks of PZT/SBT thin films were completely composed of PZT and SBT, and no other secondary phase was observed. The electrical properties of the bilayered structure PZT/SBT films have been investigated in comparison with pure PZT and SBT films. PZT/SBT bilayered thin films showed larger remanent polarization (2Pr) of 18.37 μC/cm2 than pure SBT and less polarization fatigue up to 1 × 109 switching cycles than pure PZT. These results indicated that this bilayered structure of PZT/SBT is a promising material combination for ferroelectric memory applications.  相似文献   

18.
The Zinc Selenide (ZnSe) thin films have been deposited on SnO2/glass substrates by a simple and inexpensive chemical bath deposition (CBD). The structural, optical and electrical properties of ZnSe films have been characterized by X-ray diffraction (XRD), Energy Dispersive X-ray Analysis (EDAX), optical absorption spectroscopy, and four point probe techniques, respectively. The films have been subjected to different annealing temperature in Argon (Ar) atmosphere. An increase in annealing temperature does not cause a complete phase transformation whereas it affects the crystallite size, dislocation density and strain. The optical band gap (Eg) of the as-deposited film is estimated to be 3.08 eV and decreases with increasing annealing temperature down to 2.43 eV at 773 K. The as-deposited and annealed films show typical semiconducting behaviour, dρ/dT > 0. Interestingly, the films annealed at 373 K, 473 K, and 573 K show two distinct temperature dependent regions of electrical resistivity; exponential region at high temperature, linear region at low temperature. The temperature at which the transition takes place from exponential to linear region strongly depends on the annealing temperature.  相似文献   

19.
(Na0.85K0.15)0.5Bi0.5TiO3 thin films were deposited on LaNiO3(LNO)/SiO2/Si(1 0 0) and Pt/Ti/SiO2/Si(1 0 0) substrates by metal-organic decomposition, and the effects of bottom electrodes LNO and Pt on the ferroelectric, dielectric and piezoelectric properties were investigated by ferroelectric tester, impedance analyzer and scanning probe microscopy, respectively. For the thin films deposited on LNO and Pt electrodes, the remnant polarization 2Pr are about 22.6 and 8.8 μC/cm2 under 375 kV/cm, the dielectric constants 238 and 579 at 10 kHz, the dielectric losses 0.06 and 0.30 at 10 kHz, the statistic d33eff values 95 and 81 pm/V. The improved piezoelectric properties could make (Na1−xKx)0.5Bi0.5TiO3 thin film as a promising candidate for piezoelectric thin film devices.  相似文献   

20.
New morphologies of net-like and flake-like TiO2 thin films with different concentrations of Fe dopant were successfully fabricated by micro-arc oxidation (MAO) process of Ti plates and a subsequent chemical treatment of the as-prepared MAO-TiO2 thin films. It was found that Fe ions can be easily introduced into the MAO-TiO2 samples with the increase concentration of K4(FeCN)6·3H2O precursor, and the amount of Fe determined the morphologies of TiO2 thin films after chemical treatment; net-like morphology was observed with low Fe dopant, while it transformed to a flake-like one when Fe exceeds 1.7 at.%. UV-vis spectroscopy test showed that the absorption edge of the Fe ions doped TiO2 thin films with new morphologies has an obvious red shift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号