共查询到20条相似文献,搜索用时 15 毫秒
1.
Fe-Ag alloy films were deposited by magnetron sputtering. Fe K edge X-ray absorption near-edge structure (XANES) was performed by synchrotron radiation to evidence the structure of the films. Annealing experiments were carried out to study their stability. The hardness and elastic modulus were measured by nanoindentation. The experimental and calculated XANES spectra both reveal that Fe atoms replace part of Ag atoms and supersaturated fcc Ag (Fe) solid solution alloy films are formed up to 38 at.% Fe. The solid solutions are stable and begin to precipitate at 400 °C The elastic modulus increases with the increase of Fe concentration and satisfies the rule of mixtures. The hardness of the as-deposited alloy film is larger than that calculated based on the rule of mixtures. The mechanism responsible for the enhancement of the hardness is discussed in terms of Labusch model of solid solution hardening. 相似文献
2.
A model pseudopotential depending on an effective core radius treated as a parameter is used for alkaline earth metals in bcc and fcc phases to study the Binding energy, Interatomic interactions, phonon dispersion curves, Phonon density of states, Debye-Waller factor, mean square displacement, Debye-Waller temperature parameters, dynamical elastic constants (C11, C12 and C44), bulk modulus (B), shear modulus (C′), deviation from Cauchy relation (C12−C44), Poisson's ratio (σ), Young's modulus (Y), behavior of phonon frequencies in the elastic limit independent of the direction (Y1), limiting value in the [1 1 0] direction (Y2), degree of elastic anisotropy (A) and propagation velocities of the elastic waves. The contribution of s-like electrons is incorporated through the second-order perturbation theory due to model potential. The theoretical results are compared with the existing experimental data. A good agreement between theoretical investigations and experimental findings has confirmed the ability of our potential to yield large numbers of lattice mechanical properties of certain alkaline earth metals. 相似文献
3.
We present the simultaneous measurement of the two in-plane displacement components by electronic speckle pattern interferometry with three object beams and without an in-line reference beam. Three interference fringe patterns, corresponding to three different sensitivity vectors, are recorded in a single interferogram and separated by means of the Fourier transform method. Then, two interference fringe patterns are selected to obtain the in-plane displacement components. 相似文献
4.
In the present work, different geometries of interferometers with three divergent illumination beams are discussed. It is shown that the sensitivity components for each source can be measured with a maximum weight factor. The three sources were placed respectively, on x, y and near to z axis of a coordinate system. Based on our theoretical calculations it is proposed an interferometer that uses ESPI technique. Experimental results of displacements and strains are presented for one elastic surface when a torsion load is applied near to the target centre. 相似文献
5.
Xinrui Miao Li XuChenyi Liao Zhuomin LiJian Zhou Wenli Deng 《Applied Surface Science》2011,257(10):4559-4565
Self-assembled monolayers of hexadecyl palmitate (HP) and 3,3′-thiodipropionic acid di-n-octadecyl ester (TADE) physisorbed on highly oriented pyrolytic graphite (HOPG) are investigated using scanning tunneling microscope (STM) and computer simulation. Both molecules form alkane-like linear shapes to maximize the interactions with substrate when they adsorb on HOPG surface. The HP molecules self-assemble into lamellae with the chain-trough angle of 48°, which is the result of a shifting 3/2 units from the adjacent molecule in a lamella. Based on the simulation insights combined with STM images, we confirm that a perpendicular orientation appears in which the HP molecular backbone is rotated 90° with respect to the substrate such that the carbonyl points away from the HOPG surface. TADE molecules form three kinds of configurations with chain-trough angles of 90°, 72° and 60° by shifting 0, 1/2 and 1 units from their adjacent molecules, respectively. The bright stripes in STM images reveal the electron density distribution of the part between two ester groups. The energy differences of three TADE adsorption configurations by molecular mechanics (MM) simulation are used to explain the structural coexistence phenomenon. It is also shown that lattice match between alkyl chain of molecules and HOPG substrate could change molecular conformation upon self-assembly. 相似文献
6.
The cooling rate and heat treatment dependence of Young's modulus for Ti-base multicomponent nanostructure-dendrite composites exhibits a very different response compared with the monolithic nanostructured or normal grain-sized Ti alloys. With increasing cooling rate, the decrease in the volume fraction of the micrometer-sized β-phase dendrites induces a significant increase in Young's modulus for most of these composites. This increase can cover the decrease in Young's modulus induced by the reduction of grain size of the nanostructured matrix. Heat treatment induces a significant increase in Young's modulus due to the precipitation of intermetallics and/or α-phase in the nanostructured matrix. 相似文献
7.
Lin-gun Liu K. Okamoto Yi-jong Yang Chien-chih Chen Chung-Cherng Lin 《Solid State Communications》2004,132(8):517-520
Phase D (MgSi2O6H2) is the only hydrous magnesium silicate, where all Si atoms are octahedrally coordinated. The single-crystal elastic constants of phase D have been measured by Brillouin spectroscopy at ambient conditions. The elastic constants C11, C33, C44, C12, C13 and C14, based on a trigonal unit cell, are 284.4±3.0, 339.4±9.1, 120.7±1.9, 89.4±4.2, 126.6±3.1 and −4.7±1.4 GPa, respectively. The aggregate adiabatic bulk modulus, using the Voigt-Reuss-Hill (VRH) scheme, is 175.3±14.8 GPa and the shear modulus is 104.4±13.6 GPa. These data yield the compressional-wave velocity, Vp=9.70±0.51 km/s, and the shear-wave velocity, Vs=5.59±0.36 km/s, at ambient conditions. Thus, phase D is not only the most closely packed but the least compressible hydrous magnesium silicate known to date. 相似文献
8.
We present in this study a spectroscopic investigation of the delamination of the amorphous carbon nitride (a-CNx) films deposited by RF magnetron sputtering of a graphite target in Ar/N2 gas mixture. The microstructure of the studied films have been analysed prior and after their delamination. The origin of the observed spontaneous delamination have been elucidated in terms of chemical reactions between water and CN bonds at the a-CNx/Si interface, which support delamination crack advance. 相似文献
9.
Aditya M. Vora 《Journal of Physics and Chemistry of Solids》2007,68(9):1725-1729
The computations of the static and vibrational properties of four equiatomic Na-based binary alloys viz. Na0.5Li0.5, Na0.5K0.5, Na0.5Rb0.5 and Na0.5Cs0.5, to second order in local model potential is discussed in terms of real-space sum of Born von Karman central force constants. The local field correlation functions due to Hartree (H), Ichimaru-Utsumi (IU) and Sarkar et al. (S) are used to investigate the influence of the screening effects on the aforesaid properties. Results for the lattice constants C11, C12, C44, C12-C44, C12/C44 and bulk modulus B obtained using the H-local field correction function have higher values in comparison with the results obtained for the same properties using IU- and S-local field correction functions. The results for the Shear modulus (C′), deviation from Cauchy's relation, Poisson's ratio σ, Young modulus Y, propagation velocity of elastic waves, phonon dispersion curves and degree of anisotropy A are highly appreciable for the four equiatomic Na-based binary alloys. 相似文献
10.
Molecular dynamics simulation is used to study nanoindentation of the self-assembled monolayers (SAMs) on an Au surface. The interaction of SAM atoms is described by a general universal force field (UFF), the tight-binding second-moment approximation (TB-SMA) is used for Au substrate, and the Lennard-Jones potential function is employed to describe interaction among the indenter, the SAMs, and the Au substrate atoms. The model consists of a planar Au substrate with n-hexadecanethiol SAM chemisorbed to the substrate. The simulation results show that the contact pressure increases as the SAMs temperature increases. In addition, the contact pressure also increases as the depth and velocity of indentation increase. 相似文献
11.
It has been shown that zirconium tungstate (ZrW2O8) exhibits isotropic negative thermal expansion and undergoes pressure-induced amorphization above 1.5 GPa, at room temperature. Now, we have found that amorphous ZrW2O8 undergoes endothermic recrystallization, and thus have an overall entropy lower than that of the crystalline phase. This counterintuitive behavior can be rationalized owing to the same low-energy modes already shown to be responsible for the isotropic negative thermal expansion and the anomalously high heat capacity at low temperatures exhibited by ZrW2O8. Our findings point to an entire class of materials that should behave similarly to ZrW2O8 and constitute direct experimental evidence for an overall entropy increase in an amorphous-to-crystalline transition. 相似文献
12.
The effect of Tb on the coercivity and impact toughness of sintered Nd–Dy–Fe–B magnets has been investigated. The results showed that the addition of Tb enhanced the intrinsic coercivity, reduced the remanence and improved the impact toughness of sintered magnets. The optimum impact toughness of sintered magnets was achieved when 1.0 at% Tb was incorporated. The possible reasons for increasing the intrinsic coercivity and improving impact toughness of sintered magnets were analyzed, and the relations between the microstructure and impact toughness of sintered magnets were studied. 相似文献
13.
C. Justin Raj 《Optics Communications》2008,281(8):2285-2290
Bulk single crystals of l-alanine formate of 10 mm diameter and 50 mm length have been grown with an aid of modified Sankaranarayanan-Ramasamy (SR) uniaxial crystal growth method within a period of ten days. The optical properties of the grown crystal were calculated from UV transmission spectral analysis. The second harmonic generation efficiency of the grown crystal was confirmed by Kurtz powder test. In order to determine the mechanical strength of the crystal, Vicker’s microhardness test was carried along the growth plane (0 0 1). Dielectric studies reveal that both dielectric constant and dielectric loss decreases with increase in frequency. Photoconductivity study confirms the negative photoconducting nature of the crystal. 相似文献
14.
The adsorption structure and hydrogen-bonded complexes of alkane and alkene derivatives self-assembled on HOPG were studied by scanning tunneling microscopy (STM) and Molecular Mechanics (MM) simulations. The effect of different interior -CHCH- conformations and functional groups in molecules on the structure and stability of self-assembled monolayers was considered. It was found that octadecanol and trans-oleic acid could form stable structure on HOPG and their high-resolution images could be obtained by STM. Octadecanol exhibited two kinds of packing by alkyl-alkyl and adsorbate-substrate interactions. The interior trans-CHCH- group in trans-oleic acid had a slight influence on the self-assembly configuration. However, owing to the cis-double bond in the interior of cis-oleyamine molecule, the ordered monolayer could not be easily imaged by STM at ambient conditions. The adsorption conformations of three kinds of molecules on HOPG surface were optimized by MM simulation, respectively. The analysis of hydrogen-bond interactions by computation stimulation also revealed that the stability of cis-oleyamine on HOPG was the worst. These results demonstrated that molecular self-assembly and its stability could be significantly tailored by changing the molecular structure. 相似文献
15.
Y.D. Su 《Applied Surface Science》2009,255(18):8164-8170
We deposit ternary WCxNy thin films on Si (1 0 0) substrates at 500 °C using direct current (DC) reactive magnetron sputtering in a mixture of CH4/N2/Ar discharge, and explore the effects of substrate bias (Vb) on the intrinsic stress, preferred orientation and phase transition for the obtained films by virtue of X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and selective area electron diffraction (SAED). We find that with increasing the absolute value of Vb up to 200 V the carbon (x) and nitrogen (y) atom concentrations of WCxNy films keep almost constant with the values of 0.75 and 0.25, respectively. The XPS and SAED results, combined with the density-functional theory (DFT) calculations on the electronic structure of WC0.75N0.25, show our obtained WCxNy films are single-phase of carbonitrides. Furthermore, we find that the compressive stress sharply increases with increasing the absolute value of Vb, which leads to a pronounced change in the preferred orientation and phase structure for the film, in which a phase transition from cubic β-WCxNy to hexagonal α-WCxNy occurs as Vb is in the range of −40 to −120 V. In order to reveal the relationship between the stress and phase transition as well as preferred orientation, the DFT calculations are used to obtain the elastic constants for β-WCxNy and α-WCxNy. The calculated results show that the preferred orientation is dependent on the competition between strain energy and surface energy, and the phase transition can be attributed to a decrease in the strain energy. 相似文献
16.
A pulse-echo ultrasonic method is presented to measure elastic parameter variations during thermal loading with high accuracy. Using a dry coupling configuration dedicated to high temperature investigation, this technique has been applied on 6061-T6 aluminium samples up to 220 °C. Experimental settings are described to assess the measurement reproducibility estimated at a value of 0.2%. Consequently, the anisotropy of this aluminium between the rolling direction and two orthogonal axes has been clearly detected and also measured versus temperature. As regards the temperature dependence of these elastic parameters, these results are compared with the estimations of the Young’s modulus obtained during mechanical tests in conditions of low cycle fatigue (LCF). The same linear variation versus temperature is found but with a shift of 7 GPa. This difference has been classically attributed to systematic experimental error sources and to the distinction existing between dynamic and static elastic modulus. 相似文献
17.
H.-Y. Xie 《Applied Surface Science》2005,252(2):372-378
The frequency shift and frequency shift image of cantilever in AFM have been studied by numerical integration of the equation of motion of cantilever for silicon tip with rutile TiO2(0 0 1) surface in UHV conditions and by the Hamaker summation method for the tip-surface interaction forces. The effects of the excitation frequency at the cantilever base and the equilibrium position of the tip on the frequency shift have been calculated and the results showed the same phenomena as those measured, e.g., the frequency shift increased dramatically or rapidly before the contact point and was then almost level off after the contact point. The effects of scanning speed and the initial closest distance of tip to the contact point have been calculated at different excitation frequencies at the cantilever base and the results showed that proper frequency shift image could be obtained either by noncontact mode at the excitation frequency slightly less than the resonance frequency of free cantilever, or by tapping mode at the excitation frequency a few times smaller than the resonance frequency of free cantilever. 相似文献
18.
The mode I edge delamination could be initiated due to the presence of the interfacial peeling stresses near the edges of the multilayered systems due to the material mismatches between the adjacent layers. However, the exact peeling stress distributions could not be obtained by using the existing analytical and numerical models. It was proposed recently that the peeling moment resulting from the localized peeling stresses could be used to characterize mode I edge delamination. In this paper, the effect of the graded interlayer on the mode I edge delamination by thermal residual stresses in multilayer coating-based systems was investigated. Following the previous analysis approaches, the exact closed-form solutions for the peeling moments at individual interfaces and the curvatures for bilayer system, typical thermal barrier coating (TBC) system and TBC-based system with a graded interlayer inserted between the metallic layer and the ceramic layer were, respectively, derived. Case studies showed that the edge delamination by thermal stress could be impeded by properly selecting the coating materials and individual layer thicknesses. These studies may provide some important insights for developing fail-safe designing methodologies for multilayered systems. 相似文献
19.
We present a study of the nanoindentation behavior of Zn1−xCdxSe epilayers grown using molecular beam epitaxy; the surface roughness, microstructure, and crystallinity were analyzed using atomic force microscopy, cross-sectional transmission electron microscopy, and X-ray diffraction; the hardness H and elastic modulus E were studied using nanoindentation techniques. We found that these highly crystalline materials possessed no stacking faults or twins in their microstructures. We observed a very marked increase in the value of H and a significant decrease in the value of E upon increasing the concentration of Cd, presumably because of an increase in the stiffness of the CdSe bond relative to that of the ZnSe bond. We observed a corresponding shrinkage of the contact-induced damage area for those films having a small grain size and a higher value of H. It appears that resistance against contact-induced damage requires a higher Cd concentration. 相似文献
20.
First-principles calculations of the crystal structure and the elastic properties of RuB2 have been carried out with the plane-wave pseudopotential density functional theory method. The calculated values are in very good agreement with experimental data as well as with some of the existing model calculations. The elastic constants cij, the aggregate elastic moduli (B, G, E), Poisson's ratio, and the elastic anisotropy with pressure have been investigated. Through the quasi-harmonic Debye model considering the phonon effects, the isothermal bulk modulus, the thermal expansions, Grüneisen parameters, and Debye temperatures depending on the temperature and pressure are obtained in the whole pressure range from 0 to 60 GPa and temperature range from 0 to 1100 K as well as compared to available data. 相似文献