首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interference effects can lead to the formation of ripple structures at laser-irradiated poly(ethylene terephthalate) surfaces. Poly(ethylene terephthalate) surface was irradiated with linearly polarized light of a pulsed 157 nm laser. In a certain range of irradiation parameters, the irradiation resulted in the formation of coherent ripples patterns. The dimension of the pattern depends on the angle of the laser beam incidence. The surface morphology of the nano-patterned poly(ethylene terephthalate) was analyzed by atomic force microscopy and focused ion beam-scanning electron microscopy. Oxygen concentration in the modified polymer surface was studied by angular resolved X-ray induced photo-electron spectroscopy. Gold nano-layers were consecutively sputtered onto the laser irradiated poly(ethylene terephthalate) surfaces. The morphology of the sputtered gold nano-layers was investigated with atomic force microscopy too. We found that the morphology of the gold nano-layers changes and depends on the surface pattern of the laser irradiated poly(ethylene terephthalate). Formation of gold “nano-hills” is observed at the ridges of the ripple structures. The amount of oxygen together with the morphology of prepared polymer pattern may be the dominant factors controlling the gold layer growth. The present results are compared with those obtained earlier on PET irradiated with krypton fluoride laser.  相似文献   

2.
J. Kanasaki 《Surface science》2007,601(11):2367-2372
The morphology of structural changes of InP(1 1 0)-(1 × 1) and GaAs(1 1 0)-(1 × 1) induced by electronic processes following laser excitation has been studied by scanning tunneling microscopy. Surface-vacancy clusters are predominantly formed on n-type surfaces, while isolated anion monovacancies are generated almost exclusively on p-type surfaces. This remarkable Fermi-level effect in the morphology is characterized in terms of a screened Coulomb type interaction between charged surface monovacancies and carriers generated by laser excitation. It is shown that localization of photogenerated valence holes induces electronic bond rupture at surface sites.  相似文献   

3.
Xiangyang Peng 《Surface science》2006,600(18):3564-3569
A surprising metallization of the SiC(0 0 1)-(3 × 2) surface induced by hydrogen adsorption was discovered in recent experiments. The effect was ascribed to dangling bonds created on the third layer of the surface system by H adsorption and stabilized by steric hindrance. We have investigated the surface metallization by density functional calculations. Our total-energy minimizations show that dangling bonds on the third layer are very unstable. Instead, H adatoms form angular Si-H-Si bonds on the third layer after the asymmetric dimers on the top layer have been saturated by H forming monohydrides. The novel Si-H-Si bonds on the third layer give rise to a metallic surface, indeed. But the mechanism for metallization is very different from the one suggested originally. Likewise, H atoms can also occupy bridge positions in angular Si-H-Si bonds on the second layer and induce metallization, as well. In addition to monohydrides on the top-layer dimers, we have also investigated dihydride surfaces with additional H on the second and/or third layer. The dihydride surface structure with H adsorbed on both the second and third layers is energetically most favorable and is also metallic. In all three cases the new Si-H-Si bonds are the origin of the surface metallization while its nature is somewhat more intricate, as will be discussed.  相似文献   

4.
The Atomic Force Microscope (AFM) with the conducting cantilever has been used as a tool for controlled printing the well-defined shapes of conductive paths on the 6H-SiC(0 0 0 1) surface as well as paths connecting the shapes. For clean 6H-SiC(0 0 0 1) samples the metal-tip/sample contact is of the diode type. The conditions have been found (tip/sample voltage, current) for which the local morphology of the surface is modified during current flow between the tip and the sample. Such a modified surface shows quite a different conduction type of the tip/sample surface contact than that of the unmodified surface.  相似文献   

5.
We examine the Sb incorporation and resulting surface reconstructions of Sb and GaSb deposited on GaAs(0 0 1). These films exhibit a mixed surface reconstruction of α2(2 × 4) and α(4 × 3). Initially, Sb reacts with Ga on the surface to form 2D islands of GaSb with an α(4 × 3) surface reconstruction. The 2D islands grow to a critical size of 30 nm2, beyond which the atomic surface structure of the 2D island transforms to a α2(2 × 4) reconstruction in order to reduce the strain induced surface energy. This transformation is limited by the availability of Ga, which is necessary in higher quantities for the α2(2 × 4) reconstruction than for the α(4 × 3). The transformation results in a mixed α2(2 × 4)-α(4 × 3) surface where the surface reconstruction is coupled to the surface morphology, which may in the future provide a pathway for self-assembly of structures.  相似文献   

6.
J. Wang  Y. Liu  M.H. Xie 《Surface science》2006,600(14):169-174
A new reconstruction of √3 × √3-R30° has been observed on a GaN film grown on a 6H-SiC (0 0 0 1)-√3 × √3 surface using RHEED and LEED experimental techniques. The experimental LEED PF shows that the GaN film is Ga-terminated hexagonal. The surface is a mixture of two structures with a single bilayer height difference between them. One is a √3 × √3-R30° reconstruction with Ga-adatoms occupying the T4 sites. Another is a Ga-terminated 1 × 1 with no extra Ga on top. The area ratio of the √3 × √3 part to the 1 × 1 part is slightly larger than 1. The first principle total energy calculations and Tensor-LEED I-V curves simulations further confirm this structure model.  相似文献   

7.
A.C. Ferraz  R. Miotto 《Surface science》2007,601(13):2576-2579
The adsorption of ethylene oxide (oxirane) and diethylene dioxide (1,4-dioxane) on the Si(0 0 1) surface was investigated using the first-principles pseudopotential method within a generalised gradient approximation to the density functional theory. Our results indicate that oxirane adsorption on the silicon surface probably occurs via C-C bond. This interaction induces the breaking of the C-C bond and the formation of a Si-C-O-C-Si ring. The 1,4-dioxane interaction with the silicon (2 × 2) surface, on the other hand, results in the decomposition of the considered molecule in different radicals, depending on the original adsorbed structure. In order to disregard the possible influence of the slab considered, we suggest that high order reconstruction surfaces, i.e. (4 × 2) or (4 × 4), should be investigated.  相似文献   

8.
Using first-principles total-energy calculations, we have investigated the adsorption and diffusion of Si and Ge adatoms on Ge/Si(0 0 1)-(2 × 8) and Ge/Si(1 0 5)-(1 × 2) surfaces. The dimer vacancy lines on Ge/Si(0 0 1)-(2 × 8) and the alternate SA and rebonded SB steps on Ge/Si(1 0 5)-(1 × 2) are found to strongly influence the adatom kinetics. On Ge/Si(0 0 1)-(2 × 8) surface, the fast diffusion path is found to be along the dimer vacancy line (DVL), reversing the diffusion anisotropy on Si(0 0 1). Also, there exists a repulsion between the adatom and the DVL, which is expected to increase the adatom density and hence island nucleation rate in between the DVLs. On Ge/Si(1 0 5)-(1 × 2) surface, the overall diffusion barrier of Si(Ge) along direction is relative fast with a barrier of ∼0.83(0.61) eV, despite of the large surface undulation. This indicates that the adatoms can rapidly diffuse up and down the (1 0 5)-faceted Ge hut island. The diffusion is also almost isotropic along [0 1 0] and directions.  相似文献   

9.
With static relaxation, the surface diffusion activation energies of a single Cu adatom migrated by both atomic exchange and hopping mechanisms and the forces acted on the diffusing adatom from other atoms of Cu (0 0 1) or (1 1 0) surface are calculated by using the MAEAM. When adatom migrated on Cu (0 0 1) or (1 1 0) surface, the increment curves of the system energy by hopping mechanism are symmetrical and the saddle points are in the midpoints of the migration path, but the ones by the exchange mechanism are dissymmetrical and the saddle points are always close to the initial hole positions of the adatom and away from the initial equilibrium positions of the exchanged atom. From minimization of both the diffusion activation energy and the force acted on the diffusing adatom from other atoms, we found that, on Cu (0 0 1) surface the favorable diffusion mechanism is hopping mechanism, however, on Cu (1 1 0) surface, hopping via long bridge is easier than the exchange mechanism but the hopping via short bridge is more difficult than the exchange mechanism.  相似文献   

10.
The structure and energetics of charged vacancies on Si(1 1 1)-(7 × 7) are investigated using density functional theory calculations supplemented by estimates of ionization entropy. The calculations predict multiple possible charge states for the unfaulted edge vacancy in the adatom layer, although the −2 state is most stable on real Si(1 1 1) surfaces for which the Fermi level lies near the middle of the band gap.  相似文献   

11.
K.L. Man 《Surface science》2007,601(20):4669-4674
Information on the kinetic regime of step motion and step permeability on the Si(1 1 1) (1 × 1) surface has been obtained from observations of island decay that were made with low energy electron microscopy. Island area during decay exhibits the expected power law dependence on time, with exponent, α, that is a qualitative indicator of the kinetic regime. A new method is presented for determining the kinetic length quantitatively from measurements of the decay exponent in the symmetric island decay geometry on top of a larger concentric circular island. Using this approach, we determine the kinetic length on the Si(1 1 1) (1 × 1) surface at 1163 K to be d ∼ 75a, where a is the lattice constant. It is shown that this result locates step motion firmly in the diffusion limited regime. Mass conservation of decaying island stacks is also observed at this temperature, which indicates that steps are effectively impermeable in the context of diffusion limited step kinetics.  相似文献   

12.
We report an ab initio study of electron-phonon interactions on the Be(0 0 0 1) surface. The calculations based on density-functional theory were carried out using a linear response approach in the plane-wave pseudopotential representation. The phonon-induced contribution to excited hole (electron) lifetime broadening is calculated for the zone center surface state. The obtained results show a rather strong momentum dependence.  相似文献   

13.
We have studied the correlation between the valence electron configuration and the electronic structure of M2AC(0 0 0 1) surfaces (M = Ti, V, Cr; A = Al, Ga, Ge) by density functional theory. The A surface termination is the most stable configuration for all systems studied according to our surface energy data. As the M valence electron population is increased, the surface energy increases by 22% and 12% for A = Al and Ga, respectively, while it decreases by 29% for A = Ge. This can be understood by evaluating the valence electron concentration induced changes in the surface density of states. Antibonding surface Md-Ap states are present as Ti is substituted by Cr in M2AC(0 0 0 1) for A = Al and Ga, while antibonding surface Md-Ap states are not present as Ti is substituted by Cr in M2GeC(0 0 0 1).  相似文献   

14.
Fabien Silly 《Surface science》2006,600(17):219-223
Scanning tunneling microscopy (STM) is used to investigate the (0 0 1) surface structure of Nb doped SrTiO3 single crystals annealed in ultra high vacuum (UHV). Atomically resolved images of the (2 × 2) reconstructed surface are obtained after annealing a chemically etched sample. With further annealing dotted row domains appear, which coexist with the (2 × 2) reconstruction. The expansion of these domains with further annealing gives rise to the formation of a TiO2 enriched c(4 × 4) reconstruction.  相似文献   

15.
We have studied In-stabilized c(8 × 2)-reconstructed InAs(1 0 0) and InSb(1 0 0) semiconductor surfaces, which play a key role in growing improved III–V interfaces for electronics devices, by core-level photoelectron spectroscopy and first-principles calculations. The calculated surface core-level shifts (SCLSs) for the ζ and ζa models, which have been previously established to describe the atomic structures of the III–V(1 0 0)c(8 × 2) surfaces, yield hitherto not reported interpretation for the As 3d, In 4d, and Sb 4d core-level spectra of the III–V(1 0 0)c(8 × 2) surfaces, concerning the number and origins of SCLSs. The fitting analysis of the measured spectra with the calculated ζ and ζa SCLS values shows that the InSb spectra are reproduced by the ζ SCLSs better than by the ζa SCLSs. Interestingly, the ζa fits agree better with the InAs spectra than the ζ fits do, indicating that the ζa model describes the InAs surface better than the InSb surface. These results are in agreement with previous X-ray diffraction data. Furthermore, an introduction of the complete-screening model, which includes both the initial and final state effects, does not improve the fitting of the InSb spectra, proposing the suitability of the initial-state model for the SCLSs of the III–V(1 0 0)c(8 × 2) surfaces. The found SCLSs are discussed with the ab initio on-site charges.  相似文献   

16.
The adsorption of calcium (Ca) atoms on a Cu(0 0 1) surface has been studied by low-energy electron diffraction (LEED) at 130, 300 and 400 K. It is found that a (4 × 4) was the only LEED pattern appeared at 400 K while a quasi-hexagonal structure was formed in a wide range of submonolayer coverage at 130 K. At 300 K, the (4 × 4) LEED spots were broad and weak. The (4 × 4) structure formed at 400 K was determined by a tensor LEED I-V analysis. It is a new-type of surface alloys consisting of five substitutional Ca atoms, nine surface Cu atoms, and two atomic vacancies in the unit cell. In spite of a quite large size-difference between Ca (3.94 Å) and Cu (2.55 Å) atoms, all Ca atoms are located at the substitutional sites. Among surface alloys so far reported, the atomic size ratio between Cu and Ca in the (4 × 4), 1.54, is the largest. Optimized structural parameters reveal that large lateral displacements of surface Cu atoms, being enabled by the appearance of the vacancies, allow the formation of the (4 × 4) structure.  相似文献   

17.
Scanning tunneling microscopy (STM) has been used to study the various possible structures of adsorbed Bi on the Cu(1 0 0) surface, after equilibration at a temperature of 520 K. All of the structures previously identified by X-ray diffraction (lattice gas, c(2 × 2), c(9√2 × √2)R45°, and p(10 × 10), in order of increasing Bi-coverage) were found to be present on a single sample produced by diffusing Bi onto the Cu(1 0 0) surface from a 3-d source. By investigating the possible coexistence of various pairs of phases, it was demonstrated that the c(2 × 2) phase transforms to the c(9√2 × √2)R45° phase by a first order transition, whereas the transition from c(9√2 × √2)R45° to p(10 × 10) is continuous. In addition, the structure of surface steps was studied as a function of Bi-coverage. The results showed that the presence of Bi changes the nature of the step-step interactions at the Cu(1 0 0) surface from repulsive to attractive. The attractive step-step interactions transform any small deviations from the nominal (1 0 0) orientation of the Cu substrate into (3 1 0) microfacets. When compared with the known equilibrium crystal shape (ECS) of Bi-saturated Cu, the observed microfaceting may imply that the ECS of Cu-Bi alloys is temperature dependent.  相似文献   

18.
Theoretical investigations in the context of Heisenberg model have been made for (1 0 0) and (1 1 0) magnetic surface dynamics for a semi-infinite antiferromagnet geometry. The calculations apply to the exchange dominated regime and are based on a spin-wave operator and matching technique within the framework of non-interacting spin-wave theory. The theoretical formalism developed here does not include either relaxation or reconstruction at the surface and no electronic effects have been considered. Dispersion curves of surface spin-waves are obtained within a single framework by matching the evanescent and travelling solutions, respectively, obtained from the secular equation and satisfying the boundary conditions brought about by the surface. The excitation spectrum of the surface spin-waves has been obtained and compared with that for bulk spin-waves. The quantized bulk modes of the same energy travelling to and away from the surface are related to one another by reflection coefficients, for which sum rules are derived. The numerical results for the evolution of acoustic and optical modes are presented for two different surface planes, namely (1 0 0) and (1 1 0). The findings reported here show that: (i) the reduced coordination number for atoms near the surface as well as the surface orientation play an obvious and crucial part in the surface spin-wave spectra; (ii) the evolutions of bulk as well as surface modes undergo significant changes as a function of the bulk-surface exchange integrals for a given direction of propagation of the spin-wave modes along the surface.  相似文献   

19.
M. Caffio  A. Atrei 《Surface science》2007,601(2):528-535
The alloying process of Ti deposited on Cu(0 0 1) was studied by means of XPS, LEIS, XPD and LEED intensity analysis. With the sample held at 570 K, a linear decrease of the Cu LEIS signal as a function of the amount of Ti deposited is observed in the early stages of deposition until a constant value is reached. At the onset of the plateau a c(√2 × 5√2)R45° LEED pattern starts to be visible. XPD and LEED intensity measurements were performed for the c(√2 × 5√2)R45° phase prepared depositing ca. 1.5 monolayer of Ti. The angle-scanned XPD curves measured for the phase c(√2 × 5√2)R45° reveal that Ti atoms substitute Cu atoms in the fcc lattice of the substrate. The polar XPD curves show that at least the first four layers of the substrate are involved in the alloying process. We found that the (3 1 0) plane of the Cu4Ti alloy (D1a type-structure) fits, without significant contraction or expansion of the lattice parameters, the c(√2 × 5√2)R45° structure. The intensity versus energy curves of the diffracted beams were calculated on the basis of this structural model using the tensor LEED method. The results of the LEED intensity analysis provide a further evidence of the formation of a slab of Cu4Ti(3 1 0) layers.  相似文献   

20.
The formation and stability of Cu, Ag and Au-induced c(2 × 2) alloys at the Mo(1 0 0) and W(1 0 0) surfaces have been investigated with low-energy electron microscopy and diffraction. The ordered alloys transform to disordered overlayer structures at elevated temperature. Comparison of the transformation temperatures with energetics obtained from first principles calculations reveals the vibrational entropic contribution to the system free energy that defines alloy thermal stability. Effective Debye temperatures for metal adatoms are determined that exhibit the expected mass and bond strength dependence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号