首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
CVD polycrystalline diamond film, pulse laser-deposited (PLD) carbon film and highly oriented pirolitical graphite (HOPG) as reference, were modified by means of Ar+ ion bombardment and characterized by means of Raman scattering, transmission electron microscopy, electron-diffraction (TEM), reflected electron energy loss specroscopy (REELS) and X-ray photoelectron spectroscopy (XPS) techniques. It was found that the diamond was transferred to a carbon with halo-like morphology and disordered stack of graphene segments. Instead of the well-known electron energy loss peak of graphite at 6.5 eV, a new REELS peak appeared at 4-5 eV energies. The observed effect was explained by the modification of π-system in carbon films as a consequence of the formation of non-planar, nanometer-sized graphitic planes.  相似文献   

2.
A. Sulyok  M. Menyhard 《Surface science》2007,601(8):1857-1861
The steady-state surface compositions of the polar (O and Zn terminated) faces of ZnO{0 0 0 1} produced by low energy (0.3-2 keV) Ar+ ion bombardment were studied by Auger electron spectroscopy and electron energy loss spectroscopy. The alterations produced by the ion bombardment using different ion energies were monitored by calculating the intensity ratios of the low and high energy Zn Auger peaks (59 eV and 994 eV, respectively); Zn and O Auger peaks (59 eV and 510 eV, respectively). Based on the dependence of these ratios on the ion energy and termination of the surface, we could conclude that the stability of the Zn face is higher against the low energy argon ion bombardment-induced compositional changes than that of the O face.  相似文献   

3.
Electron energy loss spectra (ELS) have been obtained from polycrystalline Cr and Cr2O3 before and after surface reduction by 2 keV Ar+ bombardment. The primary electron energy used in the ELS measurements was systematically varied from 100 to 1150 eV in order to distinguish surface versus bulk loss processes. Two predominant loss features in the ELS spectra obtained from Cr metal at 9.0 and 23.0 eV are assigned to the surface and bulk plasmon excitations, respectively, and a number of other features arising from single electron transitions from both the bulk and surface Cr 3d bands to higher-lying states in the conduction band are also present. The ELS spectra obtained from Cr2O3 exhibit features that originate from both interband transitions and charge-transfer transitions between the Cr and O ions as well as the bulk plasmon at 24.4 eV. The ELS feature at 4.0 eV arises from a charge-transfer transition between the oxygen and chromium ions in the two surface layers beneath the chemisorbed oxygen layer, and the ELS feature at 9.8 eV arises from a similar transition involving the chemisorbed oxygen atoms. The intensity of the ELS peak at 9.8 eV decreases after Ar+ sputtering due to the removal of chemisorbed oxygen atoms. Sputtering also increases the number of Cr2+ states on the surface, which in turn increases the intensity of the 4.0 eV feature. Furthermore, the ELS spectra obtained from the sputtered Cr2O3 surface exhibit features characteristic of both Cr0 and Cr2O3, indicating that Ar+ sputtering reduces Cr2O3. The fact that neither the surface- nor the bulk-plasmon features of Cr0 can be observed in the ELS spectra obtained from sputtered Cr2O3 while the loss features due to Cr0 interband transitions are clearly present indicates that Cr0 atoms form small clusters lacking a bulk metallic nature during Ar+ bombardment of Cr2O3.  相似文献   

4.
A recently developed Cu Kα1 ( = 8047.8 eV) X-ray source/ESCA300 electron spectrometer combination has been used to investigate the intrinsic plasmon energy losses associated with the Fe 1s core level (binding energy = 7111 eV) in metallic iron. The surface and bulk intrinsic plasmon energy losses were separated and it was found that using the theoretically calculated extrinsic energy loss cross-section to represent the bulk intrinsic energy loss cross-section gave an overall intrinsic loss probability which is approximately the same as if a Lorentzian type cross-section is used. However, this approach does not separate the surface and bulk intrinsic losses properly and is not a good approximation for peak shape analysis in the near peak region. A more realistic approximation is provided by using a Lorentzian type energy loss cross-section to represent the bulk intrinsic energy losses. It has also been shown that for the Fe 1s core level of metallic iron the probability that a photoelectron will suffer an intrinsic energy loss is higher at the surface than in the bulk. Also for this core level the excitation probability for the intrinsic plasmons is greater than that of the extrinsic plasmons. Hence ignoring the intrinsic plasmons would cause considerable error in peak shape analysis in the near peak region.  相似文献   

5.
Surface termination and electronic properties of InN layers grown by high pressure chemical vapor deposition have been studied by high resolution electron energy loss spectroscopy (HREELS). HREEL spectra from InN after atomic hydrogen cleaning show N-H termination with no indium overlayer or droplets and indicate that the layer is N-polar. Broad conduction band plasmon excitations are observed centered at 3400 cm−1 in HREEL spectra with 7 eV incident electron energy which shift to 3100 cm−1 when the incident electron energies are 25 eV or greater. The shift of the plasmon excitations to lower energy when electrons with larger penetration depths are used is due to a higher charge density on the surface compared with the bulk, that is, a surface electron accumulation. These results indicate that surface electron accumulation on InN does not require excess indium or In-In bonds.  相似文献   

6.
Elastic scattering of energetic electrons over large angles (in this study 40 keV and 120°120°) implies momentum and hence energy transfer from an electron to a nucleus. Due to the large mass of the nucleus (relative to the mass of an electron) this energy transfer is small, but it has recently been shown that it can be resolved in a modern spectrometer. Hence the elastic peak of an overlayer/substrate system splits into different components corresponding to atoms with different mass. Here we extend this type of experiment to the plasmon part of a reflection energy loss spectroscopy (REELS) spectrum. It is shown that, for suitable systems, the plasmon peak of an overlayer/substrate system is split by the same amount as the elastic peak. This is a consequence of the fact that detection of an electron in REELS always requires a large-angle elastic scattering event. Moreover, we show that the relative intensity of the plasmon components contains information on the depth distribution of the scatterers.  相似文献   

7.
The X-ray PhotoElectron Energy Loss Spectroscopy (XP-EELS) and Reflection Electron Energy Loss Spectroscopy (REELS) were used for analysing surface layers of “as-received” and functionalised multiwall carbon nanotubes (MWCNT), and MWCNT decorated with Pd and Pd–Au particles after calcination/reduction. The decorated MWCNT were previously applied as catalysts in a reaction of formic acid electrooxidation. These spectroscopies, used as complementary methods of structural surface analysis, provide information on the energy position, intensity and full width at half maximum of the quasi-elastic peak and inelastic π and π + σ energy loss peaks. Analysing the π + σ energy loss peak, the bulk and surface C sp2/sp3 components can be separated. Functionalisation of MWCNT, catalyst reduction and Ar+ ion sputtering increase the C sp3 content in comparison to the “as-received” MWCNT and calcined catalysts. The intensity ratios of surface and bulk C sp3 and sp2 components evaluated from the REELS π + σ energy loss peak indicate: (i) functionalisation leads to attachment of functional groups to the MWCNT surface, (ii) calcined catalysts show an amorphous carbon overlayer at the surface and (iii) reduction of calcined catalysts leads to increasing C sp3 hybridisations.  相似文献   

8.
Results of the experimental investigation of energy losses of electron passed through thin films Cu (100) with a thickness of d ≈ 420 ? at E p = 3 keV are presented. It is revealed that the surface plasmon peak disappears at a primary electron energy of ≥6 keV. For the first time, the degree of surface amorphization and area of the disordered layer are estimated by the change of elastic peak intensity during the passage of electrons through thin films of Cu (100). There is an additional energy loss of electrons peak caused by bulk plasmon, its intensity depending on the irradiation dose under ionic bombardment.  相似文献   

9.
Valence electron energy loss spectroscopy in a transmission electron microscope is employed to investigate the electronic structure of ZnO nanowires with diameter ranging from 20 to 100 nm. Its excellent spatial resolution enables this technique to explore the electronic states of a single nanowire. We found that all of the basic electronic structure characteristics of the ZnO nanowires, including the 3.3 eV band gap, the single electron interband transitions at approximately = 9.5, approximately = 13.5,and approximately = 21.8 eV, and the bulk plasmon oscillation at approximately 18.8 eV, resemble those of the bulk ZnO. Momentum transfer resolved energy loss spectra suggest that the 13.5 eV excitation is actually consisted of two weak excitations at approximately = 12.8 and approximately = 14.8 eV, which originate from transitions of two groups of the Zn 3d electrons to the empty density of states in the conduction band, with a dipole-forbidden nature. The energy loss spectra taken from single nanowires of different diameters show several size-dependent features, including an increase in the oscillator strength of the surface plasmon resonance at approximately = 11.5 eV, a broadening of the bulk plasmon peak, and splitting of the O 2s transition at approximately = 21.8 eV into two peaks, which coincides with a redshift of the bulk plasmon peak, when the nanowire diameter decreases. All these observations can be well explained by the increased surface/volume ratio in nanowires of small diameter.  相似文献   

10.
We present the electron energy loss spectra for Ar clusters as a function of incident electron energy and of cluster size. In spectra measured with 100 eV incident electron energy the bulk excitation peak becomes visible for a mean cluster size above 170 atoms per cluster. For 250 eV incident electron energy the bulk excitation peak is clearly observable even for a mean cluster size of 120 atoms per cluster. These experimental results are qualitatively reproduced by a simple calculation that accounts for the mean free path of electrons in Ar clusters; i.e., the penetration depth of incident electrons into the cluster.  相似文献   

11.
Apart from two peaks caused by bulk and surface plasmons, four or five peaks (depending on the crystal type) of electron energy losses due to inter- and intraband electron transitions are observed in the investigation of the electron energy loss spectra for metals (Cu, Ag). A comparative analysis of the spectra for Cu or Ag films reveals a shift of bulk plasmon loss peaks to higher values for polycrystals, as in the case of transition metals and semiconductors. In a study concerning the orientation dependence of the energy loss spectra (ELS) for electrons scattered from the copper and silver surface, the anisotropy of the bulk plasmon peak is found when the incident beam’s polar angle or the sample’s azimuthal angle are altered. The anisotropy of the primary electron energy loss for plasmon excitation is also observed, depending on the sample orientation relative to the direction incident electrons. The energy losses are found to increase with an increasing atomic packing density of planes and crystal transparency relative to the incident beam.  相似文献   

12.
Energy distributions of electrons back-scattered from copper (100) and (110) surfaces have been obtained for incident electron energies in the range 30 to 350 eV. The relations between optical measurements and the characteristic energy losses, as well as the effect of interband transitions on the bulk and surface plasmon frequencies in metals which do not have ideally free electron plasmas are discussed. By chemisorbing increasing amounts of oxygen on the clean surface, the surface plasmon loss peak was identified in the copper energy loss spectrum from its intensity dependence on the dielectric constant at the surface. This peak has been identified by previous authors as the bulk plasmon loss of a single s-electron plasma oscillation. Our identification of the surface plasmon loss peak implies that the d-electrons in copper do participate in the plasma oscillation and that the bulk plasmon frequency is shifted from its free electron value because of interband transitions.  相似文献   

13.
The chemical state of sulfur and surface structure on low-energy S+ ion-treated p-InP(1 0 0) surface have been investigated by high-resolution X-ray photoelectron spectroscopy (XPS) and low-energy electron diffraction (LEED). S+ ion energy over the range of 10-100 eV was used to study the effect of ion energy on surface damage and the process of sulfur passivation on p-InP(1 0 0) by S+ ion beam bombardment. It was found that sulfur species formed on the S+ ion-treated surface. The S+ ions with energy above 50 eV were more effective in formation of In-S species, which assisted the InP surface in reconstruction into an ordered (1 × 1) structure upon annealing. After taking into account physical damage due to the process of ion bombardment, we found that 50 eV was the optimal ion energy to form In-S species in the sulfur passivation of p-InP(1 0 0). The subsequent annealing process removed donor states that were introduced during the ion bombardment of p-InP(1 0 0). Results of theoretical simulations by Transport of Ions in Materials (TRIM) are in accordance with those of experiments.  相似文献   

14.
The contrast change of secondary electron images due to the crystal orientations is observed by the ultra high vacuum scanning electron microscope (UHV-SEM) for crystal grains of clean surface of polycrystalline Al in the primary energy Ep of 200 eV to 5 keV. The low energy electron loss spectra are measured by the cylindrical mirror analyzer. The relative intensity ratio between surface and bulk plasmon loss spectra was dependent on the crystal orientations. The SEM images taken by the surface and bulk plasmon signals at Ep = 230 eV show the inverse contrast depending on the grains. The inversion of the relative intensities between the surface and bulk plasmon losses is explained qualitatively by taking into account of variation of the penetration depth of the incident beam caused by the electron channeling.  相似文献   

15.
The secondary electron (SE) spectrum (0 < E < 50 eV) has been analysed by means of a CMA. Samples were clean aluminum, aluminum becoming carbon contaminated, sintered graphite powder, electro chemically deposited polymer on platinum and monocrystals of silicon carbon contaminated. When the clean Al surface is becoming carbon contaminated a quick decrease of surface plasmon and bulk plasmon losses is observed whereas a main characteristic energy loss peak (ELS) at 20 eV and a secondary electron peak at 20 eV appear simultaneously. Both peaks are very sensitive general features of carbon contaminated surfaces. The main loss peak is attributed to the excitation of the carbon-carbon bounds (σ → σ1) as already proposed in the transmission ELS. The few eV change of the loss peak energy of various carbon compounds may correspond to slightly different carbon-carbon distances. The 20 eV secondary electrons could be produced by the relaxation of the excited state (σ1 → σ transition) via an Auger process. The cross section for molecular electronic excitation is higher than that of atomic ionization for inner level. The loss peak is as intense as the SE peak and higher by more than two orders of magnitude than the C KLL Auger peak. The modification of secondary emission under carbon contamination has been observed on a silicon sample by Scanning Electron Microscopy (SEM) in the Secondary Electron Image (SEI) mode.  相似文献   

16.
H.Y. Hu 《Applied Surface Science》2008,254(24):8029-8034
The chemical structure and site location of sulfur atoms on n-GaAs (1 0 0) surface treated by bombardment of S+ ions over their energy range from 10 to 100 eV have been studied by X-ray photoelectron spectroscopy and low energy electron diffraction. The formation of Ga-S and As-S species on the S+ ion bombarded n-GaAs surface is observed. An apparent donor doping effect is observed for the n-GaAs by the 100 eV S+ ion bombardment. It is found that the S+ ions with higher energy are more effective in the formation of Ga-S species, which assists the n-GaAs (1 0 0) surface in reconstruction into an ordered (1 × 1) structure upon subsequent annealing. The treatment is further extended to repair Ar+ ion damaged n-GaAs (1 0 0) surface. It is found that after a n-GaAs (1 0 0) sample is damaged by 150 eV Ar+ ion bombardment, and followed by 50 eV S+ ion treatment and subsequent annealing process, finally an (1 × 1) ordering GaAs (1 0 0) surface with low surface states is obtained.  相似文献   

17.
A. Politano 《Surface science》2007,601(13):2656-2659
The electronic properties of thin films of Na on Cu(1 1 1) and their interaction with water have been investigated at room temperature by high resolution electron energy loss spectroscopy. The first Na layer is characterized by two features tentatively assigned to charge density waves. The second Na layer grows as small islands. The loss spectrum of this layer shows a feature at 3.0 eV identified as a Mie resonance. Increasing alkali coverage, Na islands form a continuous film, as indicated by the appearance of a Na surface plasmon and by the disappearance of the Mie resonance. Water vapour strongly interacts with Na layers as shown by the OH-Na vibration whose frequency shifts from 36 meV to 53 meV as a function of alkali coverage.  相似文献   

18.
Experimental reflection electron energy loss (REEL) spectra are measured from aluminum for primary energies ranging from 130 eV to 2 keV. A Monte Carlo simulation is shortly described and used to calculate the same spectra. The focus is on reproducing the variable weight of surface and bulk losses as the surface sensitivity of spectra changes by changing the primary electron energy. The intensity of surface losses in the simulations is modulated by the thickness of the region where surface excitations occur. Simulations based either on a constant or an energy-dependent thickness for this layer are considered. In both cases, simulated spectra reproduce the experimental trend as a function of energy, though the correct surface-to-bulk intensity ratio for each energy is either underestimated or overestimated.  相似文献   

19.
Ab initio density functional theory, using the B3LYP hybrid functional with all-electron basis sets, has been applied to the adsorption of H on the (0 0 0 1) surface of wurtzite GaN. For bulk GaN, good agreement is obtained with photoemission and X-ray emission data for the valence band and for the Ga 3d and N 2s shallow core levels. A band gap of Eg = 4.14 eV is computed vs the experimental value (at 0 K) of 3.50 eV. A simple model, consisting of a (2 × 2) structure with 3/4-monolayer (ML) of adsorbed H, is found to yield a density of states in poor agreement with photoemission data for H adsorbed on surfaces prepared by ion bombardment and annealing. A new model, consisting of co-adsorbed Ga (1/4 ML) and H (1/2 ML), is proposed to account for these data.  相似文献   

20.
Reflection electron energy loss spectra (REELS) of Al(111) single crystal and of the aluminum polycrystalline (poly Al) film were measured at 200 eV and 1000 eV electron energies for a variety of experimental geometries and were mutually compared. No anisotropy was found for the poly Al, as expected. Polar intensity plots evaluated from the elastic (no loss) and inelastic first surface plasmon- and first bulk plasmon-loss intensities of the Al(111) surface show clearly discernable peaks for both considered electron energies. Their positions on the angular axis are the same for the elastic as well as for the inelastic, surface and bulk plasmon-loss peaks. The polar plots of intensities of the elastically and inelastically reflected electrons were compared to calculated intensities of photoelectrons emitted from the Al 2s core level to the same kinetic energy. Peak positions in the theoretically determined polar plots of electron intensities agree with those obtained experimentally in REELS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号