首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dendritic Pd catalysts, dendrimer-stabilized Pd nanoparticle (PdNP) catalysts, and their comparison and combined use for carbon–carbon coupling reactions are discussed with emphasis on the research carried out in the author’s laboratory during the last decade. Multinuclear star-shaped catalysts rather than dendritic catalysts can reach the efficiency of the best monometallic catalysts, whereas PdNPs stabilized by dendrimers can react with turnover numbers close to 106 and bring useful mechanistic indications. In both areas, leaching issues are examined. Finally, results of the literature in asymmetric Pd catalysis by chiral dendrimers and Pd nanoparticles stabilized by chiral ligands are also reviewed, revealing the importance of the dendritic and molecular ligand design and the role of leaching Pd atoms.  相似文献   

2.
Platinum and palladium dendrimer-encapsulated nanoparticles (DENs) were prepared within commercially available, fourth-generation, amine-terminated, poly(amidoamine) dendrimers (G4-NH2). The synthesis is carried out by selectively encapsulating metal complexes within the dendrimer and then reducing the resulting composite. Intradendrimer complexation requires control over the solution pH to prevent attachment of the metal complexes to primary amine groups on the dendrimer periphery. That is, the surface primary amines of the dendrimer must be selectively protonated in the presence of the interior tertiary amines. The metal-ion encapsulation and reduction processes were characterized by UV-vis spectroscopy. Forty-atom Pt and Pd DENs were examined by high-resolution transmission electron microscopy, which showed that the mean particle sizes were 1.4 and 1.5 nm, respectively, and that both were nearly monodisperse (standard deviation = 0.3 nm). The free amine groups on the dendrimer surface were used to link Pd DENs to monolithic Au surfaces via an intermediate self-assembled monolayer adhesion layer.  相似文献   

3.
Two new Fe3O4 microspheres‐supported semi‐homogeneous catalysts, namely Fe3O4‐G4‐polyaminoamido (PAMAM) dendrimers‐Pd(0) and Fe3O4‐polyethylene glycols (PEGs)‐Pd(0) were synthesized and characterized by X‐ray powder diffraction, infrared spectrum, scanning electron microscopy, transmission electron microscopy, X‐ray photoelectron spectroscopy and thermal gravimetric analysis, which can catalyze Suzuki coupling reactions. The performance of catalysts was tested for the reactions of aryl halides with phenyl boronic acid and compared with a heterogeneous catalyst Fe3O4‐(3‐aminopropyl)triethoxysilane (APTS)‐Pd(0), in which Fe3O4‐G4‐PAMAM dendrimers‐Pd(0) shows the best activity among the three catalysts. The order of the catalytic activities is Fe3O4‐G4‐PAMAM dendrimers‐Pd(0)>Fe3O4‐PEGs‐Pd(0)>Fe3O4‐APTS‐Pd(0). The catalysts can be quickly and completely recovered by simply applying a magnet of 105 mT and the efficiencies remain unaltered even after four recycles.  相似文献   

4.
Phosphinated dendrimer-bound Pd(0) complex catalysts show high stereoselectivity for allylic amination due to the surface congestion of dendrimers and can be easily recycled without loss of activity under thermomorphic conditions.  相似文献   

5.
制备了聚酰胺-胺(PAMAM)-2-吡啶甲醛(Py)席夫碱树枝状大分子及其钯配合物。通过红外、核磁共振、元素分析、等离子耦合原子发散光谱及热重-差热等分析手段对其进行了结构确证。研究了PAMAM-2-吡啶甲醛席夫碱钯配合物在Heck反应中的催化性能。以三乙胺(Et3N)作为缚酸剂,碘代苯(PhI):10 mmol,n(PhI):n(AA):n(Et3N)为1:1.4:2.5,n(Pd)=6.1×10-3 mmol(5.0G PAMAMPy-Pd),在5 mL DMF中,100 ℃和N2气保护下反应25 min,产率90.1%。催化剂经过简单的过滤可回收,重复使用3次产率仍可达82.0%。  相似文献   

6.
The synthesis and size-selective catalytic activity of Pd nanoparticles encapsulated within dendrimers functionalized with different-sized end groups is described. We designed and synthesized a series of fourth-generation poly(amidoamine) dendrimers having various extents of steric crowding on their periphery. This was accomplished by reacting the terminal amine groups of these dendrimers with epoxyalkanes substituted with different-sized alkyl groups. The modified dendrimers were characterized by 1H NMR, 13C NMR, and matrix-assisted laser desorption ionization mass spectrometry. Nearly monodisperse (1.7 +/- 0.2 nm) Pd nanoparticles were encapsulated within the interior of these dendrimers, and the resulting composite catalysts were used for the hydrogenation of three alpha-allylic alcohols having different sizes. The results showed a clear correlation between the extent of steric crowding on the dendrimer surface and the turnover frequencies (TOFs) for the substrates: more steric crowding on the dendrimer surface led to lower TOFs.  相似文献   

7.
Expanding the catalytic environment to a nanosize must be one of the most promising ways to improve the performance of homogeneous catalysts. In this Forum Article, recent developments in homogeneous nanosize palladium catalysts are reviewed. It contains solubilized palladium nanoparticles, metalated dendrimers, and complexes with well-defined nanosized ligands. These systems realize efficient catalyst recycling, unique selectivity, suppression of metal aggregation, and remarkable enhancement of the catalytic activity.  相似文献   

8.
Ionic core-shell dendrimers with an octacationic core have been applied as noncovalent supports for homogeneous catalysts. Catalytically active arylpalladium complexes, which bear a tethered sulfato group, were noncovalently attached to the ionic core-shell dendritic supports via a straightforward ion-exchange reaction under mild conditions. Diagnostic shifts in (1)H NMR and Overhauser contacts show that the sulfato groups of the catalysts are located close to the octacationic core of the dendritic support in the resulting assemblies. The location of the catalytic Pd(II) sites has been varied via two strategies: by increasing the dendrimer generation and/or by shortening of the sulfato tether. In addition, a metallodendritic assembly was prepared, which bears an alternative shell of apolar dodecyl groups. Both the dendrimer size and the nature of the dendritic shell have no influence on the binding properties of the dendritic supports, i.e., the octacationic dendrimers of generations 1-3 form discrete 1:8 assemblies with the arylpalladium complexes. The structural aspects and the nature of the metallodendritic assemblies have been studied by means of pulse gradient spin-echo NMR diffusion methods, Overhauser spectroscopy, and electron microscopy (TEM). These techniques showed that the dendritic supports and arylpalladium complexes are strongly associated in solution to give unimolecular assemblies of nanoscopic dimensions. Membrane dialysis can recover these metallodendritic assemblies due to their nanoscopic size. The catalytic performances of the metallodendritic assemblies are comparable, but slightly lower than the performance of the unsupported catalyst.  相似文献   

9.
通过固相合成方法将聚酰胺-胺树状分子担载于氯球上,对其外围分别用2,4-二羟基苯甲醛和邻羟基苯甲醛进行修饰,再与SnCl2.2H2O反应,形成配体不同的两类树状高分子锡配合物.将此类配合物用作30%的双氧水氧化酮的Baeyer-Villiger反应的非均相催化剂,具有较好的催化活性.2-金刚烷酮、环己酮、3-甲基-2-戊酮等都转化为相应的酯和内酯,底物的转化率和产物选择性均较高.对2-羟基苯甲醛、2,4-二羟基苯甲醛和邻羟基苯甲醛修饰的不同类型催化剂催化下的反应进行比较,发现配体对锡的担载量和催化活性均有不同程度的影响.其中邻羟基苯甲醛修饰的配合物因具有较高的锡担载量而具有了最佳的催化活性.此催化体系使用环境友好的低浓度双氧水为氧化剂,催化剂制备方法简单、催化反应完成时间短、催化剂在多次重复利用后活性没有明显降低,可回收和重复利用.  相似文献   

10.
Three generations of bidentate phosphinated Pd(II) dendrimers are efficient catalysts in the absence of copper co-catalyst for the Sonogashira reaction and are, with two cyclohexyl substituents on the phosphorus atoms, recovered by precipitation and re-used.  相似文献   

11.
Sandra S. Pröckl 《Tetrahedron》2005,61(41):9855-9859
In situ generation of highly active palladium species by intermediate dissolution of Pd from solid supported catalysts has been demonstrated to be a very successful approach for the activation of aryl chlorides in Heck reactions. The new ‘heterogeneous’ Pd catalysts act as reservoir for molecular Pd species with unsaturated coordination sphere in solution. Crucial Pd leaching and re-deposition onto the support can be controlled by optimization of reaction conditions and by the properties of the catalysts. Pd is re-deposited onto the support at the end of the reaction. The catalysts, palladium supported on activated carbon, on various metal oxides or fluorides and Pd complexes in zeolites, are easy to prepare, though the preparation conditions are crucial. The catalysts convert all aryl bromides completely within minutes (TON 100,000). Aryl chlorides (even deactivated ones) are converted with high yields, within 2-6 h. The catalysts belong to the most active ones in Heck reactions at all (including best homogeneous systems) and fulfill all relevant requirements for practical applications in laboratory and industry.  相似文献   

12.
Summary: Nanostructured regular materials based on cross-linked polypropylene imine (PPI) dendrimers and silica-gel polyamine composites were used as a support for the synthesis of Pd nanoparticles. The materials were tested as catalysts and displayed a high activity and selectivity for the hydrogenation of conjugated double bonds.  相似文献   

13.
The gold nanoparticles with core diameter of 3.9-4.7 nm were stabilized with octanethiolate and dipyridylphosphinicamido undecanethiolate. Without varying the size of central Au cores, palladium complexes were immobilized onto these Au nanoparticles through chelation to the surface-bound dipyridyls. Hybrid catalysts of this type were dissolvable and precipitable, and their structures and reactions were investigated by solution nuclear magnetic resonance (NMR) spectroscopy with a resolution typically attained for soluble systems. These surface-bound Pd(II) complexes were highly effective catalysts for [2+2+2] alkyne cyclotrimerization reactions to give highly congested benzene rings with fairly good selectivity. The catalytic reactivity of these interphase catalysts was even higher than that of their unbound counterparts. In addition, they can be easily separated and quantitatively recovered by simple filtration. The recovered catalysts can be effectively recycled many times and their electron microscopy images and NMR spectra showed negligible difference from those of freshly prepared. The complete transformation by Au-bound Pd(II) catalyst with a loading of 4 mol % can be achieved within 1 h for most alkynes. The same catalysis can be further accelerated in ionic liquid under microwave conditions to give nearly 100% of cyclotrimerized products in minutes.  相似文献   

14.
A series of Pd–Ag mixed‐metal nanocatalysts were prepared by reduction of Pd–Ag salts in the presence of poly(propylene imine) dendrimers, which were covalently bound to the surface of a silica polyamine composite, BP‐1 (polyallylamine covalently bound to a silanized amorphous silica gel). Three different Pd‐to‐Ag ratios were evaluated (50:50, catalyst 1 ; 40:60, catalyst 2 ; 60:40, catalyst 3 ) with the goal of determining how the amount of Ag effects selectivity, rate and conversion in the selective reduction of alkynes, such as phenylacetylene and 1‐ or 4‐octyne, to the corresponding alkenes. Conditions for the catalysis are reported where there is improved selectivity without a serious reduction in rate when compared with the analogous Pd‐only catalysts. Catalyst 2 worked best for phenylacetylene and catalyst 3 worked best for the octynes. The catalysts could be reused seven times without loss of activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Highly active, recyclable catalytic systems for the hydroesterification reaction of olefins with methanol and carbon monoxide were prepared by complexing various palladium species to generation zero through four PAMAM dendrimers immobilized on silica. The silica-dendrimer-Pd(PPh2)2 complexes were the most facile recyclable catalysts and could be recycled four to six times by filtration under air. These catalysts show selectivity for the linear reaction product.  相似文献   

16.
以PdBr2为起始原料,分别选择二叔丁基苯基膦((t-Bu)2PPh)、二叔丁基-(4-二甲基氨基苯基)膦(Amphos)、4,5-双二苯基膦-9,9-二甲基氧杂蒽(Xantphos)为有机膦配体,通过溶剂的配位加成和有机膦的配位取代,合成出3种溴化钯配合物,以寻找性能更佳的偶联催化剂.借助元素分析仪、核磁共振仪及单晶...  相似文献   

17.
We report the synthesis, characterization, and catalytic properties of novel monodisperse SiO(2)@Pd-PAMAM core-shell microspheres containing SiO(2) microsphere cores and PAMAM dendrimer-encapsulated Pd nanoparticle (Pd-PAMAM) shells. First, SiO(2) microspheres, which were prepared by the St?ber method, were functionalized with vinyl groups by grafting their surfaces with vinyltriethoxysilane (VTS). The vinyl groups were then converted into epoxides by using m-chloroperoxybenzoic acid. Upon treatment with amine-terminated G4 poly(amidoamine) (PAMAM) dendrimers, the SiO(2)-supported epoxides underwent ring-opening and gave SiO(2)@PAMAM core-shell microspheres. Pd nanoparticles within the cores of the SiO(2)-supported PAMAM dendrimers were synthesized by letting Pd(II) ions complex with the amine groups in the cores of the dendrimers and then reducing them into Pd(0) with NaBH(4). This produced the SiO(2)@Pd-PAMAM core-shell microspheres. The presence of the different functional groups on the materials was monitored by following the changes in FTIR spectra, elemental analyses, and weight losses on thermogravimetric traces. Transmission electron microscopy (TEM) images showed the presence of Pd nanoparticles with average size of 1.56 ± 0.67 nm on the surface of the monodisperse SiO(2)@Pd-PAMAM core-shell microspheres. The SiO(2)@Pd-PAMAM core-shell microspheres were successfully used as an easily recyclable catalyst for hydrogenation of various olefins, alkynes, keto, and nitro groups, giving ~100% conversion and high turnover numbers (TONs) under 10 bar H(2) pressure, at room temperature and in times ranging from 10 min to 3 h. In addition, the SiO(2)@Pd-PAMAM core-shell microspheres were proven to be recyclable catalysts up to five times with barely any leaching of palladium into the reaction mixture.  相似文献   

18.
In this paper, we report synthesis of new alkyldiphenyl phosphine ligand modified poly(ether imine) dendrimers up to the third generation. The phosphinated dendrimers were obtained by functional group transformations of the alcohols present at the periphery of the dendrimers to chloride, followed by phosphination using LiPPh2. The modification at the peripheries of the dendrimers was performed successfully to obtain up to 16 alkyl diphenylphosphines in the case of a third generation dendrimer, in good yields for each individual step. After phosphination, dendritic ligands were complexed with Pd(COD)Cl2 to give dendritic phosphine-PdII complexes. Both the ligands and the metal complexes were characterized by spectroscopic and spectrometric techniques including high-resolution mass spectral analysis for the lower generations. Evaluation of the catalytic efficacies of the dendrimer-PdII metal complexes in mediating a prototypical C-C bond forming reaction, namely the Heck reaction, was performed using various olefin substrates. While the substrate conversion lowered with catalyst in the order from monomer to third generation dendrimer, the second and third generation dendrimers themselves were found to exhibit significantly better catalytic activities than the monomer and the first generation dendrimer.  相似文献   

19.
Aryl-based pincer metal complexes with anionic terdentate ligands have been widely applied in organic synthesis, organometallic catalysis and other related areas. Synthetically, the most simple and convenient method for the construction of these complexes is the direct metal-induced C(aryl)-H bond activation, which can be fulfilled by choosing the appropriate functional donor groups in the two side arms of the aryl-based pincer preligands. In this perspective, we wish to summarize some results achieved by our group in this context. Successful examples include symmetrical chiral bis(imidazoline) NCN pincer complexes with Ni(II), Pd(II) and Pt(II), bis(phosphinite) and bis(phosphoramidite) PCP pincer Pd(II) complexes, unsymmetrical (pyrazolyl)phosphinite, (amino)phosphinite and (imino)phosphinite PCN pincer Pd(II) complexes, chiral (imidazolinyl)phosphinite and (imidazolinyl)phosphoramidite PCN pincer complexes with Ni(II) and Pd(II) as well as unsymmetrical (oxazolinyl)amine and (oxazolinyl)pyrazole NCN' pincer Pd(II) complexes. Among them, the P-donor containing complexes are efficiently synthesized by the "one-pot phosphorylation/metalation" method. The obtained symmetrical and unsymmetrical pincer complexes have been used as catalysts in Suzuki-Miyaura reaction (Pd), asymmetric Friedel-Crafts alkylation of indole with trans-β-nitrostyrene (Pt) as well as in asymmetric allylation of aldehyde and sulfonimine (Pd). In the Suzuki couplings conducted at 40-50 °C, some unsymmetrical Pd complexes exhibit much higher activity than the related symmetrical ones which can be attributed to their faster release of active Pd(0) species resulting from the hemilabile coordination of the ligands. Literature results on the synthesis of some related pincer complexes as well as their activities in the above catalytic reactions are also presented.  相似文献   

20.
A series of dendritic phenylazomethines (DPA), which have a meso-substituted zinc porphyrin core (DPAGX-ZnP, X = 1-4), were synthesized. Structural studies of these dendrimers were carried out using Tri-SEC (triple detection after size exclusion chromatography), intrinsic viscosity analysis, TEM (tunneling electron microscopy), and molecular modeling calculations by AM1. As a result, a sphere-like structure within a single-nanometer scale (R(h) = 22 A for DPAG4-ZnP) was observed. In addition, encapsulating effects by the DPA shell in the larger dendrimers were confirmed as fundamental properties, based on the UV-vis abosorption spectra, cyclic voltammograms, and 1H NMR spin-lattice relaxation times (T1). The DPAGX-ZnP acts as a multi-metal ion reservoir for SnCl2 and FeCl3. The generation-4 dendrimer (DPAG4-ZnP) can take up to 60 molar amounts of metal complexes around the porphyrin core. A quantitative study of the metal assembling reaction by UV-vis titration revealed stepwise layer-by-layer complexations from the inner imines nearest to the core to the surface. The redox behavior and fluorescence of the zinc porphyrin in these metal-assembled dendrimers also support the stepwise complexation of the metal ion. These analyses suggest that the finely assembled metal complexes in a dendrimer architecture strongly affect the electronic status of the porphyrin core. Results from transient absorption measurements strongly indicate a very fast electron transfer on a subpicosecond time scale between the core and assembled metal complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号