首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
β‐Cyclodextrin (β‐CD) is negligibly soluble in organic liquids and can be modified to achieve a higher solubility in water. In this paper, racemic α‐cyclohexyl‐mandelic acid (α‐CHMA) was separated by chiral reactive extraction with aqueous β‐cyclodextrin derivatives. Hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD), hydroxyethyl‐β‐cyclodextrin (HE‐β‐CD), and methyl‐β‐cyclodextrin (Me‐β‐CD) were selected as chiral selectors for reactive extraction of α‐CHMA enantiomers from organic phase to aqueous phase. Factors affecting the extraction efficiency were investigated, including the types of organic solvents and β‐CD derivatives, the concentrations of the chiral selector and α‐CHMA enantiomers, pH and temperature. The experimental results demonstrate that HP‐β‐CD, HE‐β‐CD, and Me‐β‐CD have stronger recognition abilities for Sα‐CHMA than for Rα‐CHMA. Among the three derivatives, HP‐β‐CD shows the strongest separation factor for α‐CHMA enantiomers. A high enantioseparation efficiency with a maximum separation factor (α) of 2.02 is observed at pH 2.5 and 5°C.  相似文献   

2.
建立了毛细管区带电泳手性拆分α-萘基缩水甘油醚对映体的方法.考察了不同手性拆分试剂对手性选择性的影响,实验结果表明,20 mmol/L H3PO4-三乙醇胺(pH 2.5)、2%(w/V)HS-β-CD、毛细管温度20 ℃、运行电压-18 kV为最佳分离条件,在该分离条件下α-萘基缩水甘油醚对映体实现基线分离.方法简便、准确,可用于α-萘基缩水甘油醚的手性拆分和对映体过量值(ee,%)测定.  相似文献   

3.
Tang  Kewen  Song  Litao  Pan  Yang  Jiang  Xinyu  Miao  Jiabing 《中国化学》2010,28(1):119-124
Enantioselective partitioning of ibuprofen enantiomers in a biphasic recognition chiral extraction system was studied. A combination of hydrophobic L‐isobutyl tartrate in organic phase and hydrophilic β‐cyclodextrin derivative in aqueous phase is necessary to establish a biphasic recognition chiral extraction system. The studies performed involve an enantioselective extraction in a biphasic system, where ibuprofen enantiomers form four complexes with the β‐cyclodextrin derivative in aqueous phase and the D(L)‐isobutyl tartrate in organic phase, respectively. In these biphasic resolutions, the types and the concentrations of the extractants, pH and temperature all exert a considerable influence on the biphasic recognition process. Good enantioselectivities for ibuprofen enantiomers were obtained at pH≦2.5 and a ratio of 2:1 of [L‐isobutyl tartrate] to [HP‐β‐CD]. Biphasic recognition chiral extraction is of strong chiral separation ability, and may be very helpful to optimize the extraction systems and realize the large‐scale production of enantiomers.  相似文献   

4.
组合手性萃取拆分克伦特罗外消旋体   总被引:1,自引:1,他引:0  
以D-二苯甲酰酒石酸(D-DBTA)和D-二对甲苯甲酰酒石酸(D-DTTA)的组合作为手性选择剂,研究克伦特罗对映体在水相和有机相中的萃取分配行为,优化了手性萃取条件,考察了组合手性选择剂的不同摩尔浓度比、有机溶剂、水相pH值和亲脂性阴离子BPh4-对手性萃取性能的影响,并测定了手性萃取拆分过程中的热力学函数.在优化的手性萃取条件下,有机相中的对映体过量值(e.e.%)可大于10%,而所使用的选择剂量相对大为降低.热力学数据分析表明,该手性萃取过程为焓控过程.  相似文献   

5.
A biphasic chiral recognition system based on chiral ligand exchange with Cu(II)‐Nn‐dodecyl‐L‐proline and hydroxypropyl‐β‐cyclodextrin as an additive was developed to enantioseparate aromatic β‐amino acids by high‐speed counter‐current chromatography. The biphasic chiral recognition system was established with an n‐butanol/water (1:1, v/v) solvent system by adding Nn‐dodecyl‐L‐proline and Cu(II) ions to the organic phase and hydroxypropyl‐β‐cyclodextrin to the aqueous phase. Several separation parameters, such as temperature, pH value, and chiral selector concentration, were systematically investigated by enantioselective liquid–liquid extraction. Under the optimal separation conditions, 54.5 mg of (R,S)‐β‐phenylalanine and 74.3 mg of (R,S)‐β‐3,4‐dimethoxyphenylalanine were baseline enantioseparated. More importantly, the synergistic enantiorecognition mechanism, based on the Cu(II)‐Nn‐dodecyl‐L‐proline and hydroxypropyl‐β‐cyclodextrin, was discussed for the first time.  相似文献   

6.
A nanoliquid chromatographic method for the stereoisomer separation of some flavanone aglycones and 7‐O‐glycosides has been proposed employing a C18 capillary column and a chiral mobile‐phase additive such as cyclodextrin. The chiral separation of eriodictyol, naringenin, and hesperitin was obtained by addition of carboxymethyl‐β‐cyclodextrin to the mobile phase, whereas eriocitrin, naringin, narirutin, and hesperidin diastereoisomers were resolved by using sulfobutyl ether‐β‐cyclodextrin. The influence of the composition of the mobile phase, the length of the capillary column, and the flow rate on the chiral recognition were investigated. At optimum conditions, baseline separation for the selected aglycones and glycosylated forms were achieved with a mobile phase consisting of 50 mM sodium acetate buffer pH 3 and 30% methanol containing 20 mM of carboxymethyl‐β‐cyclodextrin and 10 mM of sulfobutyl ether‐β‐cyclodextrin, respectively. Precision, linearity, and sensitivity of the method were tested. Limits of detection and quantification for the studied flavanone glycosides were in the range 1.3‐2.5 and 7.5‐12.5 µg/mL, respectively. The method was used for the determination of the diastereomeric composition of the flavanone‐7‐O‐glycosides in Citrus juices after solid‐phase extraction procedure.  相似文献   

7.
A method of bubble fractionation was developed for the resolution of racemic mandelic acid (MA), using 2‐hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD) as chiral collector. The influences of concentration of HP‐β‐CD, reflux equilibriation time, gas flow rate, packing height of column and pH of buffer on resolution performance were investigated, respectively. According to the similar physical behavior of bubble fractionation and chemical reaction processes, the equivalent chemical reaction constant was introduced. The resolution process was preliminarily analyzed by means of kinetics. The results show that the enantiomeric excess of 60.7% can be obtained under the optimal conditions. The process could be regarded as a first order chemical reaction, where the equivalent speed constant was kl=0.00376. This method is helpful for realizing high resolution and linear amplification of device.  相似文献   

8.
A novel chiral ionic liquid functionalized β‐cyclodextrin, 6‐O‐2‐hydroxpropyltrimethylammonium‐β‐cyclodextrin tetrafluoroborate ([HPTMA‐β‐CD][BF4]), was synthesized and used as a chiral selector in capillary electrophoresis. [HPTMA‐β‐CD][BF4] not only increased the solubility in aqueous buffer in comparison with the parent compound, but also provided a stable reversal electroosmotic flow, and the enantioseparation of eight chiral drugs was examined in phosphate buffer containing [HPTMA‐β‐CD][BF4] as the chiral selector. The effects of the [HPTMA‐β‐CD][BF4] concentration and the background electrolyte pH were studied. Moreover, the chiral separation abilities of β‐CD and [HPTMA‐β‐CD][BF4] were compared and possible mechanisms for the chiral recognition of [HPTMA‐β‐CD][BF4] are discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Two novel types of crown ether capped β‐cyclodextrin (β‐CD) bonded silica, namely, 4′‐aminobenzo‐X‐crown‐Y (X=15, 18 and Y=5, 6, resp.) capped [3‐(2‐O‐β‐cyclodextrin)‐2‐hydroxypropoxy] propylsilyl‐appended silica, have been prepared and used as stationary phases in capillary electrochromatography (CEC) to separate chiral compounds. The two stationary phases have a chiral selector with two recognition sites: crown ether and β‐CD. They exhibit excellent enantioselectivity in CEC for a wide range of compounds. After inclusion of metal ions (Na+ or K+) from the running buffer into the crown ether units, the stationary phases become positively charged and can provide extra electrostatic interaction with ionizable solutes and enhance the dipolar interaction with polar neutral solutes. This enhances the host‐guest interaction with the solute and improves chiral recognition and enantioselectivity. Due to the cooperation of the anchored β‐CD and the crown ether, this kind of crown ether capped β‐CD bonded phase shows better enantioselectivity than either β‐CD‐ or crown ether bonded phases only. These new types of stationary phases have good potential for fast chiral separation with CEC.  相似文献   

10.
In this paper, a simple, effective and green capillary electrophoresis separation and detection method was developed for the quantification of underivatized amino acids (dl ‐phenylalanine; dl ‐tryptophan) using β‐Cyclodextrin and chiral ionic liquid ([TBA] [l ‐ASP]) as selectors. Separation parameters such as buffer concentrations, pH, β‐CD and chiral ionic liquid concentrations and separation voltage were investigated for the enantioseparation in order to achieve the maximum possible resolution. A good separation was achieved in a background electrolyte composed of 15 mm sodium tetraborate, 5 mm β‐CD and 4 mm chiral ionic liquid at pH 9.5, and an applied voltage of 10 kV. Under optimum conditions, linearity was achieved within concentration ranges from 0.08 to 10 µg/mL for the analytes with correlation coefficients from 0.9956 to 0.9998, and the analytes were separated in less than 6 min with efficiencies up to 970,000 plates/m. The proposed method was successfully applied to the determination of amino acid enantiomers in compound amino acids injections, such as 18AA‐I, 18AA‐II and 3AA. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Native cyclofructans and their isopropyl derivatives were studied as chiral selectors in capillary electrophoresis and compared with α‐ and β‐cyclodextrin. R,S‐1,1’‐Binaphthalene‐2,2’‐diyl hydrogen phosphate was used as a model chiral compound. The empirical observation of the enantioselectivity of native cyclofructans and isopropyl derivatives of cyclofructans was described and compared with the cyclodextrins. The influence of methanol and acetonitrile, as the most commonly used organic solvents, and sodium dodecyl sulfate as a micelle forming additive on the separation of R,S‐1,1’‐binaphthalene‐2,2’‐diyl hydrogen phosphate atropisomers was achieved. The different enantiorecognition abilities resulting from unlike interaction mechanism with R,S‐1,1’‐binaphthalene‐2,2’‐diyl hydrogen phosphate were observed for the studied cyclodextrins and cyclofructans, especially when methanol or sodium dodecyl sulfate were used as modifiers of the separation conditions.  相似文献   

12.
This study investigates the ability of functionalized multiwalled carbon nanotubes (MWCNTs) for enantio‐separation of metoprolol chiral forms. 2Hydroxypropyl‐β‐cyclodextrin (2HP‐β‐CD) was applied as a chiral selector to functionalize carbon nanotubes (CNTs). The modified multiwalled CNT samples were characterized using scanning electron microscopy and Fourier transform infrared spectroscopy. The results of analyses showed that CNTs were successfully cross‐linked with 2HP‐β‐CD. To evaluate the enantio‐separation property of the products, the separation of metoprolol chiral forms on the initial and final products was examined. Further, UV–visible spectroscopy and polarimeter analyses were used for characterization. The results indicate that MWCNT does not have any intrinsic enantio‐separation ability, although its selectivity for enantio‐separation can be enhanced by cross‐linking it to 2HP‐β‐CD. Moreover, the optimal mass of adsorbent as well as optimal mass of functional groups is estimated to achieve maximum enantio‐separation efficiency. The results indicate that applying large amounts of 2HP‐β‐CD to CNTs functionalization decreases the cross‐linking efficiency, which consequently reduces enantio‐separation efficiency. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
New single‐isomer, cationic β‐cyclodextrins, including mono‐6‐deoxy‐6‐pyrrolidine‐β‐cyclodextrin chloride (pyCDCl), mono‐6‐deoxy‐6‐(N‐methyl‐pyrrolidine)‐β‐cyclodextrin chloride (N‐CH3‐pyCDCl), mono‐6‐deoxy‐6‐(N‐(2‐hydroxyethyl)‐pyrrolidine)‐β‐cyclodextrin chloride (N‐EtOH‐pyCDCl), mono‐6‐deoxy‐6‐(2‐hydroxymethyl‐pyrrolidine)‐β‐cyclodextrin chloride (2‐MeOH‐pyCDCl) were synthesized and used as chiral selectors in capillary electrophoresis for the enantioseparation of carboxylic and hydroxycarboxylic acids and dansyl amino acids. The unsubstituted pyCDCl exhibited the greatest resolving ability. Most analytes were resolved over a wide range of pH from 6.0 to 9.0 with this chiral selector. In general, increasing pH led to a decrease in resolution. The effective mobilities of all the analytes were found to decrease with increasing CD concentration. The optimal concentration for most carboxylic acids and dansyl amino acid was in the range 5–7.5 mM and >15 mM for hydroxycarboxylic acids. 1H NMR experiments provided direct evidence of inclusion in the CD cavity.  相似文献   

14.

Obtaining enantiomeric pure compounds is—among other techniques—possible in a resolvation experiment via diastereomeric salt formation, excellently exemplified by a modified Pope–Peachy method performed in supercritical carbon dioxide as solvent. The salt precipitation is followed by supercritical fluid extraction (SFE) to separate the diastereomeric salts and the unreacted enantiomers. To evaluate the extraction efficiency, conversion and enantioselectivity achieved, it is essential to determine the enantiomer excess and the residual resolving agent content in extracts and raffinates. Carefully chosen experimental parameters enable the simultaneous determination of certain anions and cations in capillary electrophoresis in a single run, which has not been reported for diastereomeric mixtures so far. In this paper, a partially validated chiral selective cyclodextrin enabled capillary electrophoresis method is presented for the characterization of cis-permethrinic acid samples resolved with (R)-1-phenylethylamine prepared by the SFE-based resolvation technique. To evaluate the efficiency of the resolvation, a cyclodextrin enabled chiral separation method was developed applying permethylated-β-cyclodextrin as chiral selector. The theoretical possibility of the widespread application of the developed method (with minor adjustments) is justified for other selectands and selectors. The developed methods can be thereby applied for the fast and reliable control of resolvation experiments.

  相似文献   

15.
This work documents the influence of the position of single carboxymethyl group on the β‐cyclodextrin skeleton on the enantioselectivity. These synthesized monosubstituted carboxymethyl cyclodextrin (CD) derivatives, native β‐cyclodextrin, and commercially available carboxymethyl‐β‐cyclodextrin with degree of substitution approximately 3 were used as additives into the BGE consisting of phosphate buffer at 20 mmol/L concentration, pH 2.5, and several biologically significant low‐molecular‐mass chiral compounds were enantioseparated by CE. The results indicate that different substituent location on β‐cyclodextrin skeleton has a significant influence on the enantioseparation of the investigated enantiomers. The enantioselectivity of 2IO‐regioisomer was better than with native β‐cyclodextrin. Comparable results to native β‐cyclodextrin were obtained for 6IO‐ regioisomer and the enantioselectivity of 3IO‐regioisomer was even worse than with native β‐cyclodextrin. Commercially available derivative of CD provides better resolutions than the monosubstituted carboxymethyl CD derivatives for most of the investigated analytes.  相似文献   

16.
In the past decade, ionic liquids have received great attention owing to their potential as green solvent alternatives to conventional organic solvents. In this work, hydrophobic achiral ionic liquids (1-butyl-3-methylimidazolium-hexafluorophosphate([bmim][PF6]), 1-octyl-3-methylimidazolium tetrafluoroborate([omim][BF4])) were used as solvents in chiral liquid-liquid extraction separation of mandelic acid (MA) enantiomers with β-cyclodextrin (β-CD) derivatives as hydrophilic chiral selectors preferentially forming complexes with (R)-enantiomers. Factors affecting the separation efficiency were optimised, namely the type of the extraction solvents and β-CD derivatives, concentrations of the β-CD derivatives and MA enantiomers, pH, and temperature. Excellent enantioseparation of MA enantiomers was achieved in the ionic liquid aqueous two-phase extraction systems under the optimal conditions of pH 2.5 and temperature of 5°C with the maximum enantioselectivity (α) of 1.74. The experimental results demonstrated that the ionic liquid aqueous two-phase extraction systems with a β-CD derivative as the chiral selector have a strong chiral recognition ability, which might extend the application of ionic liquids in chiral separation.  相似文献   

17.
CE methods with capacitively coupled contactless conductivity detection (C4D) were developed for the enantiomeric separation of the following stimulants: amphetamine (AP), methamphetamine (MA), ephedrine (EP), pseudoephedrine (PE), norephedrine (NE) and norpseudoephedrine (NPE). Acetic acid (pH 2.5 and 2.8) was found to be the optimal background electrolyte for the CE‐C4D system. The chiral selectors, carboxymethyl‐β‐cyclodextrin (CMBCD), heptakis(2,6‐di‐O‐methyl)‐β‐cyclodextrin (DMBCD) and chiral crown ether (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid (18C6H4), were investigated for their enantioseparation properties in the BGE. The use of either a single or a combination of two chiral selectors was chosen to obtain optimal condition of enantiomeric selectivity. Enantiomeric separation of AP and MA was achieved using the single chiral selector CMBCD and (hydroxypropyl)methyl cellulose (HPMC) as the modifier. A combination of the two chiral selectors, CMBCD and DMBCD and HPMC as the modifier, was required for enantiomeric separation of EP and PE. In addition, a combination of DMBCD and 18C6H4 was successfully applied for the enantiomeric separation of NE and NPE. The detection limits of the enantiomers were found to be in the range of 2.3–5.7 μmol/L. Good precisions of migration time and peak area were obtained. The developed CE‐C4D method was successfully applied to urine samples of athletes for the identification of enantiomers of the detected stimulants.  相似文献   

18.
A new binary chiral selector system effective for the enantioselective extraction of racemic mandelic acid is presented. While L-dipentyl tartrate and β-cyclodextrin had a very low enantioselectivity as single selectors, a preferential extraction of D-mandelic acid to the organic phase was found in the binary selector system. Using decanol as organic solvent and pH of a phoshate buffer equal to 2.3, the distribution coefficients of D-and L-mandelic acids as high as 14.9 and 7.0, respectively, and the enantioselectivity value of 2.1 were found at optimum concentration of β-cyclodextrin.  相似文献   

19.

Capillary zone electrophoresis employing a dual cyclodextrin (CD) system, consisting of anionic sulfobutylether-β-CD and native β-CD, was developed for the simultaneous chiral separation of four H1-antihistamine racemates (brompheniramine, chlorpheniramine, cetirizine and promethazine). A cost-effective screening using different native and derivatized, neutral and ionized CDs as chiral selectors was performed to find suitable derivatives for the dual CD system. Under the optimized conditions consisting of 25 mM phosphate background electrolyte at pH 7.0, a combination of 15 mM SBE-β-CD and 10 mM β-CD as chiral selectors, +25 kV applied voltage and 20 °C system temperature, the baseline chiral separation of all racemates was accomplished in less than 8 min. The method proved to be suitable for routine analysis, since it provided satisfactory results during sensitivity, linearity and repeatability studies.

  相似文献   

20.
Columns containing different types of cyclodextrin derivatives have been evaluated for chiral gas chromatographic separation of atropisomeric PCBs, o,p´‐DDT and o,p´‐DDD. Separation was attempted on columns containing mixed chiral selectors, and the performance of two closely related selectors was also examined. The cyclodextrins were: permethylated‐β‐CD (PM‐β‐CD), heptakis(2,3‐di‐O‐methyl‐6‐Otert‐butyldimethylsilyl)‐β‐CD (2,3‐M‐6‐TBDMS‐β‐CD), heptakis(2,3‐di‐O‐methyl‐6‐Otert‐hexyldimethylsilyl)‐β‐CD (2,3‐M‐6‐THDMS‐β‐CD), and heptakis(2,3‐di‐O‐ethyl‐6‐Otert‐hexyldimethylsilyl)‐β‐cyclodextrin (2,3‐E‐6‐THDMS‐β‐CD). The cyclodextrins were dissolved in OV‐1701 or in a dimethylsiloxane/silarylene copolymer containing 5% phenyl in the backbone. The application of mixed chiral selectors led to improved separations, however; at most eleven PCB congeners were separated on a single column. Chiral resolution of o,p´‐DDD was achieved. The use of a dimethylsiloxane/silarylene copolymer as a matrix for the cyclodextrins is a promising approach. With such a matrix, blocking of the CD cavities by silicone substituent groups can be avoided, and a reasonable CD solubility can be provided. The selectivity of heptakis(2,3‐di‐O‐ethyl‐6‐Otert‐hexyldimethylsilyl)‐β‐CD and heptakis(2,3‐di‐O‐methyl‐6‐Otert‐hexyldimethylsilyl)‐β‐CD was quite different, the former selector could separate four congeners, while the latter separated ten congeners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号