首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Mandal SK 《Talanta》1979,26(2):133-134
Vanadium(III) solutions can be used in direct titrations of iron(III), copper(II), thallium(III), molybdenum(VI), uranium(VI), vanadium(V), chromium(VI) and manganese(VII) in milligram amounts. The titrations are done at 70-80 degrees for iron(III), copper(II), thallium(III), molybdenum(VI) and at room temperature for vanadium(V), chromium(VI) and manganese(VII). Uranium(VI) is titrated at 70-80 degrees in presence of iron(II). The vanadium(III) solution is prepared by reduction of vanadium(V) to vanadium(IV) with sulphur dioxide, followed by addition of phosphoric acid and reduction with iodide, and is reasonably stable.  相似文献   

2.
The applicability of catalytic end-point indication to redox titrations is demonstrated by the determination of 3–30 μmol of ascorbic acid (in 22.5 ml of solution) with standard dichromate solution; the chromium(VI)-catalyzed oxidation of o-dianisidine with hydrogen peroxide serves as indicator reaction. Oxidizing substances, such as vanadium(V), thallium(III) or cerium(IV) can be determined by addition of excess of ascorbic acid and back-titration.  相似文献   

3.
Raju KV  Gautam GM 《Talanta》1988,35(6):490-492
The use of oxazine dyes as redox indicators in the determination of uranium(VI), copper(II), osmium(VIII), iridium(IV) and thallium(III) with iron(II) as reductimetric titrant in phosphoric acid medium has been investigated. The determination of copper in brass and the analysis of the binary mixtures of U(VI) and U(IV), and of Tl(III) and Tl(I) with this reductant and these indicators have been studied.  相似文献   

4.
Sharma DN  Sharma PD  Gupta YK 《Talanta》1976,23(4):326-328
Sulphide, sulphite and thiosulphate can be determined separately or in admixture, with thallic perchlorate or sulphate in acid medium. A sample solution is rendered approximately 0.5 M in acid, 5 ml of 0.05 M KI are added and the solution is titrated to a starch end-point with thallium(III) solution. In another method an acid sample solution is titrated with thallium(III) or iodine solution in the presence of indigo carmine indicator. The end-point is improved in the presence of Co(II).  相似文献   

5.
Gawali SB  Shinde VM 《Talanta》1974,21(11):1212
4-methylpentan-2-ol is used for quantitative extraction of iron(III) from 5.5-6M hydrochloric acid. The iron(III) is then stripped with water and determined titrimetrically. Te(IV), Se(IV), ascorbate, fluoride and thiocyanate interfere must be absent. Mo(VI), W(VI) and Au(III) are co-extracted but do not interfere in the determination.  相似文献   

6.
Thallium(III) oxide can be dissolved in water in the presence of strongly complexing cyanide ions. Tl(III) is leached from its oxide both by aqueous solutions of hydrogen cyanide and by alkali-metal cyanides. The dominating cyano complex of thallium(III) obtained by dissolution of Tl2O3 in HCN is [Tl(CN)3(aq)] as shown by 205Tl NMR. The Tl(CN)3 species has been selectively extracted into diethyl ether from aqueous solution with the ratio CN-/Tl(III) = 3. When aqueous solutions of the MCN (M = Na+, K+) salts are used to dissolve thallium(III) oxide, the equilibrium in liquid phase is fully shifted to the [Tl(CN)4]- complex. The Tl(CN)3 and Tl(CN)4- species have for the first time been synthesized in the solid state as Tl(CN)3.H2O (1), M[Tl(CN)4] (M = Tl (2) and K (3)), and Na[Tl(CN)4].3H2O (4) salts, and their structures have been determined by single-crystal X-ray diffraction. In the crystal structure of 1, the thallium(III) ion has a trigonal bipyramidal coordination with three cyanide ions in the equatorial plane, while an oxygen atom of the water molecule and a nitrogen atom from a cyanide ligand, attached to a neighboring thallium complex, form a linear O-Tl-N fragment. In the three compounds of the tetracyano-thallium(III) complex, 2-4, the [Tl(CN)4]- unit has a distorted tetrahedral geometry. Along with the acidic leaching (enhanced by Tl(III)-CN- complex formation), an effective reductive dissolution of the thallium(III) oxide can also take place in the Tl2O3-HCN-H2O system yielding thallium(I), while hydrogen cyanide is oxidized to cyanogen. The latter is hydrolyzed in aqueous solution giving rise to a number of products including (CONH2)2, NCO-, and NH4+ detected by 14N NMR. The crystalline compounds, Tl(I)[Tl(III)(CN)4], Tl(I)2C2O4, and (CONH2)2, have been obtained as products of the redox reactions in the system.  相似文献   

7.
光度络合滴定(Ⅰ)——微量铁(Ⅲ)的滴定   总被引:1,自引:0,他引:1  
本文提出在pH=0.8和波长540nm,以二甲酚橙作指示剂,用铋盐作回滴剂光度滴定3-100微克铁。本法选择性很高,大量铝、钛(Ⅳ)、铬(Ⅲ)、铜、铅、锌、镉、锰、镧、铈(Ⅲ)、钨(Ⅶ)、钼(Ⅵ)、钒(Ⅴ)、砷(Ⅲ)、镁、钙、银以及适量的汞、钍、锑(Ⅲ)、镍、氟离子、氯离子和磷酸根等不干扰,应用适当的隐蔽剂,400倍于铁的铝以及适量的钍、锆和锡也不干扰。应用本法,不必分离便可滴定石英石、石英砂、铝合金、纯铝以及水样中的铁。  相似文献   

8.
Dalvi MB  Khopkar SM 《Talanta》1979,26(9):892-894
Scandium is quantitatively extracted with 4% Amberlite LA-1 or Amberlite LA-2 in xylene at pH 2.5-5.5 from 0.1M malonic acid. Scandium is stripped from the organic phase with 0.5M hydrochloric acid and determined spectrophotometrically at 525 nm, as its complex with Alizarin Red S. Primene JM-T, tri-iso-octylamine, tributylamine and tribenzylamine have also been studied as extractants, but found to be unsatisfactory for various reasons. Xylene, toluene, benzene, chloroform, carbon tetrachloride, hexane, cyclohexane and kerosene have been studied as diluents. Xylene is found to be the most efficient. Scandium can be separated from most metals by selective extraction, and from gallium, thallium(III), bismuth, antimony(III), chromium(III), copper(II), iron(III), uranium(VI), cerium, zirconium, indium, thorium and titanium by selective stripping, in some cases combined with use of suitable complexing media to retain the other metals in the organic phase.  相似文献   

9.
Kataoka M  Nishimura K  Kambara T 《Talanta》1983,30(12):941-944
A trace amount of molybdenum(VI) can be determined by using its catalytic effect on the oxidation of iodide to iodine by hydrogen peroxide in acidic medium. Addition of ascorbic acid added to the reaction mixture produces the Landolt effect, i.e., the iodine produced by the indicator reaction is reduced immediately by the ascorbic add. Hence the concentration of iodide begins to decrease once all the ascorbic acid has been consumed. The induction period is measured by monitoring the concentration of iodide ion with an iodide ion-selective electrode. The reciprocal of the induction period varies linearly with the concentration of molybdenum(VI). The most suitable pH and concentrations of hydrogen peroxide and potassium iodide are found to be 1.5, 5 and 10mM, respectively. An appropriate amount of ascorbic acid is added to the reaction mixture according to the concentration of molybdenum(VI) in the sample solution. A calibration graph with good proportionality is obtained for the molybdenum(VI) concentration range from 0.1 to 160 μM. Iron(III), vanadium(IV), zirconium(IV), tungsten(VI), copper(II) and chromium(VI) interfere, but iron(III) and copper(II) can be masked with EDTA.  相似文献   

10.
Traces of lead and minor amounts up to 20 mg, can be separated from gram amounts of thallium by cation-exchange chromatography on a column containing only 2 g of AG50W-X4 resin. Thallium passes through the column in 0.1 M HCl in 40% acetone. The retained lead can be eluted with 3 M HCl or HNO3. Other elements, including Cd, Zn, In, Ga, Cu(II), Fe(III). Mn(II), Co(II). Ni(II), U(VI) and Al, are retained quantitatively with lead. Only Hg(II), Au(III), the platinum metals, bismuth and elements forming oxyanions accompanying thallium. Results for the determination of trace elements in 99.999% pure thallium are presented.  相似文献   

11.
N-Benzoylphenylhydroxylamine is employed as a precipitant for the determination of molybdenum (VI). The precipitate can be weighed either directly or as molybdenum trioxide after ignition. Molybdenum can be determined in the presence of appreciable amounts of iron(III), cobalt(II), copper(II), chromium(VI) and vanadium (V).  相似文献   

12.
Diffuse reflectance spectroscopy has been used for the study of the sorption of malonate and glycolate complexes of uranium(VI) and iron(III), present simultaneously in solution, onto the solid phase of fiber materials filled with an AB-17 anion exchanger. In the form of malonate complexes uranium(VI) is determined in 0.5 M HCl on substrate discs with immobilized Arsenazo III, while iron(III) is determined on substrate discs with potassium thiocyanate in 0.5 M HCl. The dependence of the analytical signals on the concentrations of U(VI) and Fe(III) is linear in the ranges 0.02–0.16 μg/mL; the detection limit is 0.01 μg/mL. The possibility of analysis of U(VI) and Fe(III) mixtures in ratio from 1: 5 to 5: 1 in the presence of 2-fold concentrations of Zr(IV), Th(IV), and Ti(IV), 5-fold concentrations of Bi(III), 10-fold concentrations of Cu(II), 20-fold concentrations of La(III), 100-fold concentrations of Ni(II) and Zn(II), and 200-fold concentrations of Co(II) and Ca(II) has been demonstrated. Standard color scales in the concentration range from 0.02 to 0.2 μg/mL have been used for the visual determination of uranium(VI) and iron(III).  相似文献   

13.
The heterometric titration of thallium(I) with sodium tetraphenylborate, at various pH values and in the presence of salts and different complexing agents, was studied; 1.5–0.75 mg of thallium(I) could be determined within 3–4 min, and the error was negligible. Of the complexing agents studied, sodium pyro- and tripolyphosphate had a specific influence, raising the sensitivity about 4-fold, and no interference was caused by the presence of 30–130-fold molar excesses of the following metals: Ca, Mg, Zn, Mn, Co, Ni, Fe(III), Al, UO2(II), Cd, Cu(II), Pb, Bi(III), Ag, V(V), Mo(VI) W(VI) and Th. Pd, Au(III) and Pt(IV) did not interfere.  相似文献   

14.
Kagaya S  Araki Y  Hirai N  Hasegawa K 《Talanta》2005,67(1):90-97
The coprecipitation behavior of 44 elements (47 ions because of chromium(III,VI), arsenic(III,V), and antimony(III,V)) with yttrium phosphate was investigated at various pHs. Yttrium phosphate could quantitatively coprecipitate iron(III), lead, bismuth, and indium over a wide pH range; however, 18 ions, including alkali metals and oxo anions, such as vanadium(V), chromium(VI), molybdenum(VI), tungsten(VI), germanium(IV), arsenic(III,V), selenium(IV), and tellurium(VI), were scarcely collected. In addition, 19 ions, including cobalt, nickel, and copper(II), were hardly coprecipitated at pHs below about 3. Based on these results, the separation of iron(III), lead, and bismuth from cobalt, nickel, and copper(II) matrices was investigated. Iron(III), lead, and bismuth ranging from 0.5 to 25 μg could be separated effectively from a solution containing 0.5 g of cobalt, nickel, or copper at pH 3.0. The separated iron(III), lead, and bismuth could be determined by inductively coupled plasma atomic emission spectrometry using internal standardization. The detection limits (3σ, n = 7) of iron(III), lead, and bismuth were 0.008, 0.137, and 0.073 μg, respectively. The proposed method was applied to the analyses of metals and chlorides of cobalt, nickel, and copper.  相似文献   

15.
Fuhrman DL  Latimer GW  Bishop J 《Talanta》1966,13(1):103-108
Ethylenediaminetetra-acetic acid (EDTA) and nitrilotri-acetic acid (NTA) can be differentiated and determined by titration with metal ions to visual metallochromic dye end-points. EDTA can be determined without interference from NTA, either by titrating with copper(II) at pH 5 using PAN indicator, or by titrating with iron(III) at pH 6 and 70 degrees using Tiron indicator. The total chelating power (EDTA + NTA) can be determined either by titrating with lead(II) at pH 4.4 using dithizone indicator, or by titrating with iron(III) at pH 3.5 using Tiron indicator ; NTA is determined by difference. The lowest concentration at which NTA can be determined in EDTA by titration to the iron(III)-Tiron end-point is about 1 wt.%. The apparent stability constants of the iron(III)-Tiron complexes under the conditions of the titration at pH 3.5 and pH 6 have been determined using the method of continuous variations.  相似文献   

16.
A selective preconcentration of chromium(VI) is proposed for analysis of natural waters. Chromium(VI) is quantitatively separated from chromium(III) by coprecipitation with barium sulfate; salicylic acid is used as a masking agent for iron(III), aluminum(III) and chromium(III). The precipitate is fused with alkali carbonate, and the chromium(VI) in the melt is isolated with hot water and determined spectrophotometrically with diphenylcarbazide. The detection limit is 0.02 μg l-1 the relative standard deviation for chromium(VI) in river water is less than 5%.  相似文献   

17.
Murti SS  Rao IV  Rajan SC  Subrahmanyam J 《Talanta》1989,36(5):601-602
The bromo-complex of thallium(III) is extracted into di-isopropyl ether and reductively stripped into sodium sulphite solution, which is then analysed for thallium by atomic-absorption spectrophotometry. Thallium in zinc and cadmium metals and process solutions can be determined by this method.  相似文献   

18.
A rapid and reliable determination of chromium was developed based on bromate oxidation of chromium(III) to chromium(VI). The reaction is complete under weakly acidic conditions and with cobalt(II) present as a catalyst. Unreacted bromate and chromium(VI) are then reduced with sulfite to bromide and chromium(III). The bromide is titrated potentiometrically with mercury(I) using a silver amalgam indicator electrode. Iron(III) if present is reduced by sulfite to iron(II) and does not interfere. Some binary and ternary metal mixtures containing chromium can be resolved by the determination of chromium, alone or with another metal, by the above procedure coupled with procedures for further sample portions involving the potentiometric titration of unreacted CyDTA or iodide, or both, with mercury(II).  相似文献   

19.
A novel method is developed for the extraction separation of thallium(III) from salicylate medium with n-octylaniline dissolved in toluene as an extractant. The optimum conditions have been determined by making a critical study of weak acid concentration, extractant concentration, period of equilibration and effect of solvent on the equilibria. The thallium (III) from the pregnant organic phase is stripped with acetate buffer solution (pH 4.7) and determined complexometrically with EDTA. The method affords the sequential separation of thallium(III) from thallium(I) and also commonly associated metal ions such as Al(III), Ga(III), In(III), Fe(III), Bi(III), Sb(III) and Pb(II). It is used for analysis of synthetic mixtures of associated metal ions and alloys. The method is highly selective, simple and reproducible. The reaction takes place at room temperature and requires 15-20 min for extraction and determination of thallium(III).  相似文献   

20.
The kinetics of the iron(II) reduction of thallium(III) oxinate does not differ essentially from that of the oxinate-transfer from thallium(III)-oxinate to iron(III), described before: formation of a binuclear intermediate, rearrangements within, and subsequent reaction with the excess reactant to the final products. As for the redox process, these intermediates are binuclear Tl(II)-Fe(III) complexes which, with initial reactants, form further complexes in which the second electron is transferred. In the cases of excess Tl(ox)3 and of equimolar reactants, disproportionations are likely involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号