首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this paper is threefold. First, we prove sharp singular affine Moser–Trudinger inequalities on both bounded and unbounded domains in \({\mathbb {R}}^{n}\). In particular, we will prove the following much sharper affine Moser–Trudinger inequality in the spirit of Lions (Rev Mat Iberoamericana 1(2):45–121, 1985) (see our Theorem 1.4): Let \(\alpha _{n}=n\left( \frac{n\pi ^{\frac{n}{2}}}{\Gamma (\frac{n}{2}+1)}\right) ^{\frac{1}{n-1}}\), \(0\le \beta <n\) and \(\tau >0\). Then there exists a constant \(C=C\left( n,\beta \right) >0\) such that for all \(0\le \alpha \le \left( 1-\frac{\beta }{n}\right) \alpha _{n}\) and \(u\in C_{0}^{\infty }\left( {\mathbb {R}}^{n}\right) \setminus \left\{ 0\right\} \) with the affine energy \(~{\mathcal {E}}_{n}\left( u\right) <1\), we have
$$\begin{aligned} {\displaystyle \int \nolimits _{{\mathbb {R}}^{n}}} \frac{\phi _{n,1}\left( \frac{2^{\frac{1}{n-1}}\alpha }{\left( 1+{\mathcal {E}}_{n}\left( u\right) ^{n}\right) ^{\frac{1}{n-1}}}\left| u\right| ^{\frac{n}{n-1}}\right) }{\left| x\right| ^{\beta }}dx\le C\left( n,\beta \right) \frac{\left\| u\right\| _{n}^{n-\beta }}{\left| 1-{\mathcal {E}}_{n}\left( u\right) ^{n}\right| ^{1-\frac{\beta }{n}}}. \end{aligned}$$
Moreover, the constant \(\left( 1-\frac{\beta }{n}\right) \alpha _{n}\) is the best possible in the sense that there is no uniform constant \(C(n, \beta )\) independent of u in the above inequality when \(\alpha >\left( 1-\frac{\beta }{n}\right) \alpha _{n}\). Second, we establish the following improved Adams type inequality in the spirit of Lions (Theorem 1.8): Let \(0\le \beta <2m\) and \(\tau >0\). Then there exists a constant \(C=C\left( m,\beta ,\tau \right) >0\) such that
$$\begin{aligned} \underset{u\in W^{2,m}\left( {\mathbb {R}}^{2m}\right) , \int _{ {\mathbb {R}}^{2m}}\left| \Delta u\right| ^{m}+\tau \left| u\right| ^{m} \le 1}{\sup } {\displaystyle \int \nolimits _{{\mathbb {R}}^{2m}}} \frac{\phi _{2m,2}\left( \frac{2^{\frac{1}{m-1}}\alpha }{\left( 1+\left\| \Delta u\right\| _{m}^{m}\right) ^{\frac{1}{m-1}}}\left| u\right| ^{\frac{m}{m-1}}\right) }{\left| x\right| ^{\beta }}dx\le C\left( m,\beta ,\tau \right) , \end{aligned}$$
for all \(0\le \alpha \le \left( 1-\frac{\beta }{2m}\right) \beta (2m,2)\). When \(\alpha >\left( 1-\frac{\beta }{2m}\right) \beta (2m,2)\), the supremum is infinite. In the above, we use
$$\begin{aligned} \phi _{p,q}(t)=e^{t}- {\displaystyle \sum \limits _{j=0}^{j_{\frac{p}{q}}-2}} \frac{t^{j}}{j!},\,\,\,j_{\frac{p}{q}}=\min \left\{ j\in {\mathbb {N}} :j\ge \frac{p}{q}\right\} \ge \frac{p}{q}. \end{aligned}$$
The main difficulties of proving the above results are that the symmetrization method does not work. Therefore, our main ideas are to develop a rearrangement-free argument in the spirit of Lam and Lu (J Differ Equ 255(3):298–325, 2013; Adv Math 231(6): 3259–3287, 2012), Lam et al. (Nonlinear Anal 95: 77–92, 2014) to establish such theorems. Third, as an application, we will study the existence of weak solutions to the biharmonic equation
$$\begin{aligned} \left\{ \begin{array}{l} \Delta ^{2}u+V(x)u=f(x,u)\text { in }{\mathbb {R}}^{4}\\ u\in H^{2}\left( {\mathbb {R}}^{4}\right) ,~u\ge 0 \end{array} \right. , \end{aligned}$$
where the nonlinearity f has the critical exponential growth.
  相似文献   

2.
We prove that, for all integers \(n\ge 1\),
$$\begin{aligned} \Big (\sqrt{2\pi n}\Big )^{\frac{1}{n(n+1)}}\left( 1-\frac{1}{n+a}\right) <\frac{\root n \of {n!}}{\root n+1 \of {(n+1)!}}\le \Big (\sqrt{2\pi n}\Big )^{\frac{1}{n(n+1)}}\left( 1-\frac{1}{n+b}\right) \end{aligned}$$
and
$$\begin{aligned} \big (\sqrt{2\pi n}\big )^{1/n}\left( 1-\frac{1}{2n+\alpha }\right) <\left( 1+\frac{1}{n}\right) ^{n}\frac{\root n \of {n!}}{n}\le \big (\sqrt{2\pi n}\big )^{1/n}\left( 1-\frac{1}{2n+\beta }\right) , \end{aligned}$$
with the best possible constants
$$\begin{aligned}&a=\frac{1}{2},\quad b=\frac{1}{2^{3/4}\pi ^{1/4}-1}=0.807\ldots ,\quad \alpha =\frac{13}{6} \\&\text {and}\quad \beta =\frac{2\sqrt{2}-\sqrt{\pi }}{\sqrt{\pi }-\sqrt{2}}=2.947\ldots . \end{aligned}$$
  相似文献   

3.
In this paper, we establish two families of approximations for the gamma function: $$ \begin{array}{lll} {\varGamma}(x+1)&=\sqrt{2\pi x}{\left({\frac{x+a}{{\mathrm{e}}}}\right)}^x {\left({\frac{x+a}{x-a}}\right)}^{-\frac{x}{2}+\frac{1}{4}} {\left({\frac{x+b}{x-b}}\right)}^{\sum\limits_{k=0}^m\frac{{\beta}_k}{x^{2k}}+O{{\left(\frac{1}{x^{2m+2}}\right)}}},\\ {\varGamma}(x+1)&=\sqrt{2\pi x}\cdot(x+a)^{\frac{x}{2}+\frac{1}{4}}(x-a)^{\frac{x}{2}-\frac{1}{4}} {\left({\frac{x-1}{x+1}}\right)}^{\frac{x^2}{2}}\\ &\quad\times {\left({\frac{x-c}{x+c}}\right)}^{\sum\limits_{k=0}^m\frac{{\gamma}_k}{x^{2k}}+O{\left({\frac{1}{x^{2m+2}}}\right)}}, \end{array}$$ where the constants ${\beta }_k$ and ${\gamma }_k$ can be determined by recurrences, and $a$ , $b$ , $c$ are parameters. Numerical comparison shows that our results are more accurate than Stieltjes, Luschny and Nemes’ formulae, which, to our knowledge, are better than other approximations in the literature.  相似文献   

4.
A new Stirling series as continued fraction   总被引:1,自引:0,他引:1  
We introduce the following new Stirling series
$ n!\sim \sqrt{2\pi n}\left( \frac{n}{e}\right) ^{n}\exp \frac{1}{12n+\frac{ \frac{2}{5}}{n+\frac{\frac{53}{210}}{n+\frac{\frac{195}{371}}{n+\frac{\frac{ 22,\!999}{22,\!737}}{n+\ddots}}}}}, $
as a continued fraction, which is faster than the classical Stirling series.
  相似文献   

5.
Let n and s be integers such that \(1\le s<\frac{n}{2}\), and let \(M_n(\mathbb {K})\) be the ring of all \(n\times n\) matrices over a field \(\mathbb {K}\). Denote by \([\frac{n}{s}]\) the least integer m with \(m\ge \frac{n}{s}\). In this short note, it is proved that if \(g:M_n(\mathbb {K})\rightarrow M_n(\mathbb {K})\) is a map such that \(g\left( \sum _{i=1}^{[\frac{n}{s}]}A_i\right) =\sum _{i=1}^{[\frac{n}{s}]}g(A_i)\) holds for any \([\frac{n}{s}]\) rank-s matrices \(A_1,\ldots ,A_{[\frac{n}{s}]}\in M_n(\mathbb {K})\), then \(g(x)=f(x)+g(0)\), \(x\in M_n(\mathbb {K})\), for some additive map \(f:M_n(\mathbb {K})\rightarrow M_n(\mathbb {K})\). Particularly, g is additive if \(char\mathbb {K}\not \mid \left( [\frac{n}{s}]-1\right) \).  相似文献   

6.
For any prime \(p>3,\) we prove that
$$\begin{aligned} \sum _{k=0}^{p-1}\frac{3k+1}{(-8)^k}{2k\atopwithdelims ()k}^3\equiv p\left( \frac{-1}{p}\right) +p^3E_{p-3}\pmod {p^4}, \end{aligned}$$
where \(E_{0},E_{1},E_{2},\ldots \) are Euler numbers and \(\left( \frac{\cdot }{p}\right) \) is the Legendre symbol. This result confirms a conjecture of Z.-W. Sun. We also re-prove that for any odd prime \(p,\)
$$\begin{aligned} \sum _{k=0}^{\frac{p-1}{2}}\frac{6k+1}{(-512)^k}{2k\atopwithdelims ()k}^3\equiv p\left( \frac{-2}{p}\right) \pmod {p^2} \end{aligned}$$
using WZ method.
  相似文献   

7.
In this paper, we study the existence of solutions for the following impulsive fractional boundary-value problem:
$$\begin{aligned} {\left\{ \begin{array}{ll} - \frac{\mathrm{d}}{\mathrm{d}t} \Big (\frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t)) \Big ) = \lambda u (t) + f (t, u (t)), &{} t \ne t_j, \;\;\text {a.e.}\;\; t \in [0, T],\\ \Delta \Big (\frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t_j) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t_j)) \Big ) = I_j (u (t_j)), &{} j = 1, 2, \ldots , n,\\ u (0) = u (T) = 0, \end{array}\right. } \end{aligned}$$
where \(\alpha \in (1/2, 1]\), \(0 = t_0< t_1< t_2< \cdots< t_n< t_{n +1} = T\), \(\lambda \) is a parameter and \(f :[0, T] \times {\mathbb {R}} \rightarrow {\mathbb {R}}\) and \(I_j : {\mathbb {R}} \rightarrow {\mathbb {R}}\), \(j = 1, \ldots , n\) are continuous functions and
$$\begin{aligned}&\Delta \left( \frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t_j) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t_j)) \right) \\&\quad = \frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t_j^+) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t_j^+) \\&\qquad -\, \frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t_j^-) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t_j^-) ,\\&\frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t_j^+) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t_j^+)) \nonumber \\&\quad = \lim _{t \rightarrow t_j^+} \left( \frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t))\right) ,\\&\frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t_j^-) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t_j^-)) \\&\quad = \lim _{t \rightarrow t_j^-} \left( \frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t))\right) . \end{aligned}$$
By using critical point theory and variational methods, we give some new criteria to guarantee that the impulsive problems have at least one solution and infinitely many solutions.
  相似文献   

8.
In this paper, we improve the previous results of the authors [G. Lü and H. Tang, On some results of Hua in short intervals, Lith. Math. J., 50(1):54–70, 2010] by proving that each sufficiently large integer N satisfying some congruence conditions can be written as
$ \left\{ {\begin{array}{*{20}{c}} {N = p_1^2 + p_2^2 + p_3^2 + p_4^2 + {p^k},} \hfill \\ {\left| {{p_j} - \sqrt {{\frac{N}{5}}} } \right| \leqslant U,\quad \left| {p - {{\left( {\frac{N}{5}} \right)}^{\frac{1}{k}}}} \right| \leqslant U\,{N^{ - \frac{1}{2} + \frac{1}{k}}},\quad j = 1,\,2,\,\,3,\,4,} \hfill \\ \end{array} } \right. $
where U = N 1/2?η+ε with \( \eta = \frac{1}{{2k\left( {{K^2} + 1} \right)}} \) and K = 2k ?1, k ? 2.
  相似文献   

9.
We aim at evaluating the following class of series involving the product of the tail of two consecutive zeta function values
$$\sum\limits_{n=1}^{\infty}\left(\zeta(k)-1-\frac{1}{2^k}-\cdots-\frac{1}{n^k}\right)\left(\zeta(k+1)-1-\frac{1}{2^{k+1}}-\cdots-\frac{1}{n^{k+1}}\right),$$
where \({k\geq 2}\) is an integer. We show that the series can be expressed in terms of Riemann zeta function values and a special integral involving a polylogarithm function.
  相似文献   

10.
For \(k,l\in \mathbf {N}\), let
$$\begin{aligned}&P_{k,l}=\Bigl (\frac{l}{k+l}\Bigr )^{k+l} \sum _{\nu =0}^{k-1} {k+l\atopwithdelims ()\nu } \Bigl (\frac{k}{l}\Bigr )^{\nu }\\&\quad \text{ and }\quad Q_{k,l}=\Bigl (\frac{l}{k+l}\Bigr )^{k+l} \sum _{\nu =0}^{k} {k+l\atopwithdelims ()\nu } \Bigl (\frac{k}{l}\Bigr )^{\nu }. \end{aligned}$$
We prove that the inequality
$$\begin{aligned} \frac{1}{4}\le P_{k,l} \end{aligned}$$
is valid for all natural numbers k and l. The sign of equality holds if and only if \(k=l=1\). This complements a result of Vietoris, who showed that
$$\begin{aligned} P_{k,l}<\frac{1}{2} \quad {(k,l\in \mathbf {N})}. \end{aligned}$$
An immediate corollary is that
$$\begin{aligned} \frac{1}{4}\le P_{k,l}<\frac{1}{2} <Q_{k,l}\le \frac{3}{4} \quad {(k,l\in \mathbf {N})}. \end{aligned}$$
The constant bounds are sharp.
  相似文献   

11.
The maximum TSP with γ-parameterized triangle inequality is defined as follows. Given a complete graph G = (V, E, w) in which the edge weights satisfy w(uv) ≤ γ · (w(ux) + w(xv)) for all distinct nodes \({u,x,v \in V}\), find a tour with maximum weight that visits each node exactly once. Recently, Zhang et al. (Theor Comput Sci 411(26–28):2537–2541, 2010) proposed a \({\frac{\gamma+1}{3\gamma}}\)-approximation algorithm for \({\gamma\in\left[\frac{1}{2},1\right)}\). In this paper, we show that the approximation ratio of Kostochka and Serdyukov’s algorithm (Upravlyaemye Sistemy 26:55–59, 1985) is \({\frac{4\gamma+1}{6\gamma}}\), and the expected approximation ratio of Hassin and Rubinstein’s randomized algorithm (Inf Process Lett 81(5):247–251, 2002) is \({\frac{3\gamma+\frac{1}{2}}{4\gamma}-O\left(\frac{1}{\sqrt{n}}\right)}\), for \({\gamma\in\left[\frac{1}{2},+\infty\right)}\). These improve the result in Zhang et al. (Theor Comput Sci 411(26–28):2537–2541, 2010) and generalize the results in Hassin and Rubinstein and Kostochka and Serdyukov (Inf Process Lett 81(5):247–251, 2002; Upravlyaemye Sistemy 26:55–59, 1985).  相似文献   

12.
In this papers we prove the generalized Hyers–Ulam–Rassias stability of the following mixed additive-quadratic Jensen functional equation $$\begin{aligned} 2f\left( \frac{x+y}{2}\right) +f\left( \frac{x-y}{2}\right) +f\left( \frac{y-x}{2}\right) =f(x)+f(y) \end{aligned}$$ in non- Archimedean \(\ell \) -fuzzy normed spaces.  相似文献   

13.
In this paper we mainly study the Cauchy problem of a four-component Novikov system. We first show the local well-posedness of the system in Besov spaces \(B^{s+1}_{p,r}\times B^{s+1}_{p,r}\times B^s_{p,r} \times B^s_{p,r}\) with \(p,r\in [1,\infty ],~s>\max \{\frac{1}{p},\frac{1}{2}\}\) by using the Littlewood–Paley theory and transport equations theory. Then, by virtue of logarithmic interpolation inequalities and the Osgood lemma, we prove the local well-posedness of the system in the critical Besov space \(B^{\frac{3}{2}}_{2,1}\times B^{\frac{3}{2}}_{2,1} \times B^{\frac{1}{2}}_{2,1}\times B^{\frac{1}{2}}_{2,1}\). Next, we establish two blow-up criteria for strong solutions to the system by using the structure of the system. Moreover, we investigate the persistence property for strong solutions to the system. Finally, we verify that the system possesses a special class of peakon solutions.  相似文献   

14.
Let La(n, P) be the maximum size of a family of subsets of [n] = {1, 2, … , n} not containing P as a (weak) subposet, and let h(P) be the length of a longest chain in P. The best known upper bound for La(n, P) in terms of |P| and h(P) is due to Chen and Li, who showed that \(\text {La}(n,P) \le \frac {1}{m+1} \left (|{P}| + \frac {1}{2}(m^{2} +3m-2)(h(P)-1) -1 \right ) {\left (\begin {array}{c}{n}\\ {\lfloor n/2 \rfloor } \end {array}\right )}\) for any fixed m ≥ 1. In this paper we show that \(\text {La}(n,P) \le \frac {1}{2^{k-1}} \left (|P| + (3k-5)2^{k-2}(h(P)-1) - 1 \right ) {\left (\begin {array}{c}{n}\\ {\lfloor n/2 \rfloor } \end {array}\right )}\) for any fixed k ≥ 2, improving the best known upper bound. By choosing k appropriately, we obtain that \(\text {La}(n,P) = \mathcal {O}\left (h(P) \log _{2}\left (\frac {|{P}|}{h(P)}+2\right ) \right ) {\left (\begin {array}{c}{n}\\ {\lfloor n/2 \rfloor } \end {array}\right )}\) as a corollary, which we show is best possible for general P. We also give a different proof of this corollary by using bounds for generalized diamonds. We also show that the Lubell function of a family of subsets of [n] not containing P as an induced subposet is \(\mathcal {O}(n^{c})\) for every \(c>\frac {1}{2}\).  相似文献   

15.
We introduce a natural definition for sums of the form
$\sum_{\nu=1}^xf(\nu)$
when the number of terms x is a rather arbitrary real or even complex number. The resulting theory includes the known interpolation of the factorial by the Γ function or Euler’s little-known formula \(\sum_{\nu=1}^{-1/2}\frac{1}{\nu}=-2\ln 2\).
Many classical identities like the geometric series and the binomial theorem nicely extend to this more general setting. Sums with a fractional number of terms are closely related to special functions, in particular the Riemann and Hurwitz ζ functions. A number of results about fractional sums can be interpreted as classical infinite sums or products or as limits, including identities like
$\begin{array}{l}\displaystyle\lim_{n\to\infty}\Biggl[e^{\frac{n}{4}(4n+1)}n^{-\frac{1}{8}-n(n+1)}(2\pi)^{-\frac{n}{2}}\prod_{k=1}^{2n}\Gamma\biggl(1+\frac{k}{2}\biggr)^{k(-1)^k}\Biggr]\\[12pt]\quad =\displaystyle\sqrt[12]{2}\exp\biggl(\frac{5}{24}-\frac{3}{2}\zeta'(-1)-\frac{7\zeta(3)}{16\pi^2}\biggr),\end{array}$
some of which seem to be new; and even for those which are known, our approach provides a new method to derive these identities and many others.
  相似文献   

16.
In this paper, we prove some congruences conjectured by Z.-W. Sun: For any prime \(p>3\), we determine
$$\begin{aligned} \sum \limits _{k = 0}^{p - 1} {\frac{{{C_k}C_k^{(2)}}}{{{{27}^k}}}} \quad {\text { and }}\quad \sum \limits _{k = 1}^{p - 1} {\frac{{\left( {\begin{array}{l} {2k} \\ {k - 1} \\ \end{array}} \right) \left( { \begin{array}{l} {3k} \\ {k - 1} \\ \end{array} } \right) }}{{{{27}^k}}}} \end{aligned}$$
modulo \(p^2\), where \(C_k=\frac{1}{k+1}\left( {\begin{array}{c}2k\\ k\end{array}}\right) \) is the k-th Catalan number and \(C_k^{(2)}=\frac{1}{2k+1}\left( {\begin{array}{c}3k\\ k\end{array}}\right) \) is the second-order Catalan numbers of the first kind. And we prove that
$$\begin{aligned} \sum _{k=1}^{p-1}\frac{D_k}{k}\equiv -q_p(2)+pq_p(2)^2\pmod {p^2}, \end{aligned}$$
where \(D_n=\sum _{k=0}^{n}\left( {\begin{array}{c}n\\ k\end{array}}\right) \left( {\begin{array}{c}n+k\\ k\end{array}}\right) \) is the n-th Delannoy number and \(q_p(2)=(2^{{p-1}}-1)/p\) is the Fermat quotient.
  相似文献   

17.
Hong-Bin Chen  Wei-Tian Li 《Order》2014,31(1):137-142
Consider families of subsets of [n]:?=?{1,2,...,n} that do no contain a given poset P as a subposet. Let La(n, P) denote the largest size of such families and h(P) denote the height of P. The best known general upper bound for La(n, P) is $\left(\frac{1}{2}(|P|+h(P))-1\right)\left( \begin{array}{l}\,\,\,n \\ \lfloor \frac{n}{2} \rfloor\end{array}\right)$ , due to Bursi and Nagy (2012). This paper provides an improved upper bound $\frac{1}{m+1} \left(|P|+\frac{1}{2}(m^2+3m-2)(h(P)-1)-1\right) \left( \begin{array}{l} \,\,\,n \\ \lfloor \frac{n}{2} \rfloor\end{array}\right) $ , where m can be any positive integer less than $\lceil \frac{n}{2}\rceil$ .  相似文献   

18.
In this paper we study four-dimensional \((m,\rho )\)-quasi-Einstein manifolds with harmonic Weyl curvature when \(m\notin \{0,\pm 1,-2,\pm \infty \}\) and \(\rho \notin \{\frac{1}{4},\frac{1}{6}\}\). We prove that a non-trivial \((m,\rho )\)-quasi-Einstein metric g (not necessarily complete) is locally isometric to one of the following: (i) \({\mathcal {B}}^2_\frac{R}{2(m+2)}\times {\mathbb {N}}^2_\frac{R(m+1)}{2(m+2)}\), where \({\mathcal {B}}^2_\frac{R}{2(m+2)}\) is the northern hemisphere in the two-dimensional (2D) sphere \({\mathbb {S}}^2_\frac{R}{2(m+2)}\), \({\mathbb {N}}_\delta \) is a 2D Riemannian manifold with constant curvature \(\delta \), and R is the constant scalar curvature of g. (ii) \({\mathcal {D}}^2_\frac{R}{2(m+2)}\times {\mathbb {N}}^2_\frac{R(m+1)}{2(m+2)}\), where \({\mathcal {D}}^2_\frac{R}{2(m+2)}\) is half (cut by a hyperbolic line) of hyperbolic plane \({\mathbb {H}}^2_\frac{R}{2(m+2)}\). (iii) \({\mathbb {H}}^2_\frac{R}{2(m+2)}\times {\mathbb {N}}^2_\frac{R(m+1)}{2(m+2)}\). (iv) A certain singular metric with \(\rho =0\). (v) A locally conformal flat metric. By applying this local classification, we obtain a classification of the complete \((m,\rho )\)-quasi-Einstein manifolds given the condition of a harmonic Weyl curvature. Our result can be viewed as a local classification of gradient Einstein-type manifolds. A corollary of our result is the classification of \((\lambda ,4+m)\)-Einstein manifolds, which can be viewed as (m, 0)-quasi-Einstein manifolds.  相似文献   

19.
We study the Γ-convergence of the following functional (p > 2)
$F_{\varepsilon}(u):=\varepsilon^{p-2}\int\limits_{\Omega} |Du|^p d(x,\partial \Omega)^{a}dx+\frac{1}{\varepsilon^{\frac{p-2}{p-1}}} \int\limits_{\Omega} W(u) d(x,\partial \Omega)^{-\frac{a}{p-1}}dx+\frac{1}{\sqrt{\varepsilon}} \int\limits_{\partial\Omega} V(Tu)d\mathcal{H}^2,$F_{\varepsilon}(u):=\varepsilon^{p-2}\int\limits_{\Omega} |Du|^p d(x,\partial \Omega)^{a}dx+\frac{1}{\varepsilon^{\frac{p-2}{p-1}}} \int\limits_{\Omega} W(u) d(x,\partial \Omega)^{-\frac{a}{p-1}}dx+\frac{1}{\sqrt{\varepsilon}} \int\limits_{\partial\Omega} V(Tu)d\mathcal{H}^2,  相似文献   

20.
We prove several numerical radius inequalities for certain 2 × 2 operator matrices. Among other inequalities, it is shown that if X, Y, Z, and W are bounded linear operators on a Hilbert space, then
$$w\left( \left[\begin{array}{cc} X &; Y \\ Z &; W \end{array} \right] \right) \geq \max \left(w(X),w(W),\frac{w(Y+Z)}{2},\frac{w(Y-Z)}{2}\right) $$
and
$$w\left( \left[\begin{array}{cc}X &; Y \\ Z &; W\end{array} \right] \right) \leq \max \left( w(X), w(W)\right)+\frac{w(Y+Z)+w(Y-Z)}{2}. $$
As an application of a special case of the second inequality, it is shown that
$$\frac{\left\Vert X\right\Vert }{2}+\frac{\left\vert \left\Vert\operatorname{Re}{X}\right\Vert -\frac{\left\Vert X\right\Vert}{2}\right\vert }{4}+\frac{ \left\vert \left\Vert \operatorname{Im}{X}\right\Vert -\frac{\left\Vert X\right\Vert}{2}\right\vert }{4} \leq w(X), $$
which is a considerable improvement of the classical inequality \({\frac{ \left\Vert X\right\Vert }{2}\leq w(X)}\) . Here w(·) and || · || are the numerical radius and the usual operator norm, respectively.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号