首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Four palladium(II) complexes with R2edda ligands, dichlorido(O,O′-dialkylethylenediamine-N,N′-diacetate)palladium(II) monohydrates, [PdCl2(R2edda)]?H2O, R = Me, Et, n-Pr, i-Bu, and the new ligand precursor i-Bu2edda?2HCl?H2O, O,O′-diisobutylethylenediamine-N,N′-diacetate dihydrochloride monohydrate, were synthesized and characterized by IR, 1H and 13C NMR spectroscopy, and elemental analysis. DFT calculations were performed for the palladium(II) complexes and a high possibility for isomer formation due to stereogenic N ligand atoms was confirmed. Moreover, DFT simulations revealed energetic profile of isomer formation. Computational outcomes are in agreement with spectroscopic instrumental findings, both strongly indicating a non-stereoselective reaction between selected esters and K2[PdCl4], forming isomers.  相似文献   

2.
《Polyhedron》2002,21(14-15):1429-1437
N-Benzoylthioureas have been reported to form complexes with gold (III) and palladium (II) and other transition metals. In this study, an N-benzoyl-N′,N′-diethylthiourea (3f) ligand was used in the solvent extraction of palladium(II) and gold(III) from aqueous chloride media (0.1 mol l−1 NaCl). The distribution coefficient was determined as a function of both metal concentration in the aqueous phase and extractant concentration in the organic phase. The experimental distribution data were numerically analysed by letagrop-distr software in order to obtain the thermodynamic model corresponding to the metal extraction. It is found that pH does not affect the metal extraction process in the 1–2 pH range. Synthesis of the palladium benzoyl thiourea complexes was carried out by mixing quantities of metal and ligand solutions in methanol in a 1:2 ratio stoichiometric. Yields of 74 and 80.9% were obtained for the Pd-3c and Pd-3f complexes. In order to confirm the formation of the palladium complexes, NMR, FTIR and MS analyses were performed. From MS analyses a complex stoichiometry 1:2 (metal:ligand) was confirmed. The formation of crystals of palladium N-benzoyl-N′,N′-diethylthiourea complex (Pd-3f) in the methanolic solution allows the characterisation of the complex structure by XRD. The resulting structure is described and discussed. Bis(1,1,-diheptadecyl-3-benzoyl-thioureate)palladium(II) (Pd-3c) and bis(1,1,-diheptadecyl-3-benzoyl-thioureate)palladium(II) (Pd-3f) were used as ionophores in polymeric membrane electrodes. Their potentiometric responses to different anionic metal chlorocomplexes are evaluated and discussed taking into consideration the results obtained in the liquid–liquid distribution studies. A nernstian response was only obtained for AuCl4  (PDL=8.8×10−8) and PdCl4 2− (PDL=1.5×10−4 M) with a selectivity coefficient of KAuCl4-, PdCl42−pot=−3.4, calculated taking AuCl4  as being the primary anion.  相似文献   

3.
Jin Yang 《Tetrahedron》2019,75(14):2182-2187
A series of mixed N-heterocycles/N-heterocyclic carbene palladium(II) allyl complexes with general formula [(NHC)Pd(η3-allyl)]2(μ2-N-heterocycles)(BF4)2 were prepared in one pot based on anion metathesis of (NHC)Pd(η3-allyl)Cl complexes and then ligand replacement with N-heterocycles [N-heterocycles?=?pyrazine (pyz), 4,4′-bipyridine (bpy) and trans-4,4′-bipyridylethylene (bpe)]. The solid-state structures shown dinuclear structures with two palladium(II) centers holding together by bridged N-heterocycles. Initially investigation of the obtained complexes as precatalysts for direct CH bond arylation of azoles with aryl bromides was carried out.  相似文献   

4.
《Tetrahedron letters》2014,55(50):6868-6872
A new series of 2-amino, 4-azepanone, 5-aryl substituted derivatives of pyrimidine compounds were synthesized for the first time from the commercially available 2-amino-4-hydroxypyrimidine. The key step in the reaction is a conceptually new single step palladium catalyzed cross coupling along with the deprotection of N,N-diisopropylformimidamide using bis(triphenylphosphine)palladium(II) dichloride (PdCl2(PPh3)2).  相似文献   

5.
(N,N-dimethylbenzylamine-2C,N)palladium(II) and -platinum(II) β-diketonates, DmbaML, have been synthesized by reaction of [DmbaMCl]2 with the free ligand and KOH, or with the thallium(I) salt of the ligand. The various isomers formed have been investigated by 1H and 19F NMR spectroscopy. Infrared and mass spectroscopic studies have also been made on the compounds.  相似文献   

6.
《Tetrahedron: Asymmetry》1998,9(3):423-428
Coordinated 1-phenyl-3,4-dimethylphosphole in the chiral complex chloro{(S)-1-[1-(dimethylamino)ethyl]naphthyl-C2,N}[1-phenyl-3,4-dimethylphosphole-P]palladium behaves as an activated cyclic diene in the inter-molecular Diels–Alder reaction with 1-methyl-2-vinylpyrrole to give a pair of diastereomeric P-chiral endo-cycloadducts. The diastereomeric palladium complexes could be separated by fractional crystallization and the enantiomerically pure phosphanorbornene ligands could be liberated individually from the complexes by treatment with potassium cyanide. In contrast, the [4+2] cycloaddition reaction did not occurred under similar conditions when the chloro ligand in the phosphole complex was replaced with a perchlorato ligand.  相似文献   

7.
Metal(I) hydrides are eliminated as neutral species in the electron impact ionization mass spectra of copper(II) and palladium(II) complexes of ethylene-N,N′-3-benzoylprop-2-en-2-amine. Deuterium labelling shows that the hydrogen atom of the metal(I) hydride is derived predominantly from the ethylene bridge both for ion source reactions and for metastable ion transitions. Evidence supporting the proposed rationalization for elimination of metal(I) hydride is provided by the observation of an analogous reaction in the mass spectrum of (ethylene-N,N′-salicylaldiminato)copper(II). The mass spectrum of ethylene-d4-N,N′-3-benzoylprop-2-en-2-amine shows an unusual rearrangement to give [C7H5D2]+ ions involving a formal phenyl-to-methylene transfer.  相似文献   

8.
Cationic pentafluorophenyl palladium(II) complexes of the type [Pd(C6F5)L2(APPY)]ClO4 (L = PPh3, PBu3n; L2 = bipy and A acetylmethylenetriphenylphosphorane) have been prepared by addition of APPY to the perchlorato complexes [Pd(OClO3)(C6F5)L2]; the APPY ligand is O-coordinated, which is unprecedented in keto-stabilized ylide complexes of palladium.The neutral complex Pd(C6F5)(Cl)(tht)(APPY) has been made by addition of APPY to the binuclear complex Pd2(μ-Cl)2(C6F5)2(tht)2 (tht = tetrahydrothiophene); in which the APPY ligand shows the normal C-coordination.  相似文献   

9.
The development of a general Cu-catalyzed synthesis of (hetero)aromatic nitriles from the corresponding aryl bromides and potassium hexacyanoferrate(II) is described. This novel protocol avoids the use of highly toxic alkali cyanides and precious palladium catalysts. Best results were achieved applying Cu(BF4)2·6H2O (0.1 equiv) and N,N′-dimethyl ethylenediamine (DMEDA; 1.0 equiv) in N,N-dimethyl acetamide (DMAc).  相似文献   

10.
A protocol for the hydrodehalogenation of halogenated pyridines and quinolines by the sodium borohydride/N,N,N′,N′-tetramethylethylenediamine (NaBH4-TMEDA) system under palladium catalysts is reported. Catalytic amounts of [1,1-bis(diphenylphosphino)ferrocene] dichloropalladium(II) in combination with NaBH4-TMEDA rapidly hydrodehalogenate chloro(bromo)-pyridines and -quinolines at room temperature in quantitative yields. Chemoselective reduction of 4,7-dichloroquinoline affords 7-chloroquinoline as the sole product in almost quantitative yield. Moreover, palladium(II) acetate-triphenylphosphine and NaBH4-TMEDA are able to reduce efficiently reactive bromo-pyridines and -quinolines.  相似文献   

11.
The Stille coupling of organostannanes and organohalides, mediated by air and moisture stable palladium(II) phosphine complexes containing succinimide or phthalimide (imidate) ligands, has been investigated. An efficient synthetic route to several palladium(II) complexes containing succinimide and phthalimide ligands, has been developed. cis-Bromobis(triphenylphosphine)(N-succinimide)palladium(II) [(Ph3P)2Pd(N-Succ)Br] is shown to mediate the Stille coupling of allylic and benzylic halides with alkenyl, aryl and allyl stannanes. In competition experiments between 4-nitrobromobenzene and benzyl bromide with a cis-stannylvinyl ester, (Ph3P)2Pd(N-Succ)Br preferentially cross-couples benzyl bromide, whereas with other commonly employed precatalysts 4-nitrobromobenzene undergoes preferential cross-coupling. Furthermore, preferential reaction of deactivated benzyl bromides over activated benzyl bromides is observed for the first time. The type of halide and presence of a succinimide ligand are essential for effective Stille coupling. The type of phosphine ligand is also shown to alter the catalytic activity of palladium(II) succinimide complexes.  相似文献   

12.
New N,N′‐substituted imidazolium salts and their corresponding dibromidopyridine–palladium(II) complexes were successfully synthesized and characterized. Reactions of palladium bromide with the newly synthesized N,N′‐substituted imidazolium bromides ( 2a and 2b ) in pyridine afforded the corresponding new N‐heterocyclic carbene pyridine palladium(II) complexes ( 3a and 3b ) in high yields. Their single‐crystal X‐ray structures show a distorted square planar geometry with the carbene and pyridine ligands in trans position. Both complexes show a high catalytic activity in carbonylative Sonogashira coupling reactions of aryl iodides and aryl diiodides with arylalkynes, alkylalkynes and dialkynes.  相似文献   

13.
Xa He  H‐Yan Lu  Guo‐Sheng Liu 《中国化学》2001,19(12):1285-1288
In the presence of CuCl2, N‐(2′, 4′‐dienyl)‐2‐alkynamides can be converted to α‐alkylidene‐σ‐butyrolactams under the catalysis of palladium(II). In this reaction, CuCl2 is used to oxidize Pd(0) to regenerate Pd(II), or the carbon‐palladium bond is quenched by the oxidative cleavage reaction of CuCl2.  相似文献   

14.
In the three title complexes, namely (2,2′‐biquinoline‐κ2N,N′)dichloro­palladium(II), [PdCl2(C18H12N2)], (I), and the corresponding copper(II), [CuCl2(C18H12N2)], (II), and zinc(II) complexes, [ZnCl2(C18H12N2)], (III), each metal atom is four‐coordinate and bonded by two N atoms of a 2,2′‐biquinoline molecule and two Cl atoms. The PdII atom has a distorted cis‐square‐planar coordination geometry, whereas the CuII and ZnII atoms both have a distorted tetra­hedral geometry. The dihedral angles between the N—M—N and Cl—M—Cl planes are 14.53 (13), 65.42 (15) and 85.19 (9)° for (I), (II) and (III), respectively. The structure of (II) has twofold imposed symmetry.  相似文献   

15.
The electrical properties of siloxane oligomers prepared from the reaction of 1,4‐naphthalenediol or 1,4‐naphthoquinone with diphenylsilane using different palladium catalysts, such as PdCl2, Pd(TMEDA)Cl2, Pd(TEEDA)Cl2 (where TMEDA = N,N′‐tetramethylethylenediamine, TEEDA = N,N′‐tetraethylethylenediamine), are dependent on the catalyst. Thermoelectric switching properties can be obtained from the siloxane prepared from the coupling reaction of diphenylsilane with 1,4‐naphthoquinone or 1,4‐naphthalenediol using Pd(TMEDA)Cl2 as catalyst. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
The chelation-controlled asymmetric aminohalogenation of α,β-unsaturated 3-aryl-N-acyl-N-4-phenyl-2-oxazolidinones have been established by using palladium(II) acetate as the catalyst and as the chelation metal. The reaction is very convenient to perform by simply mixing the three reactants, cinnamates, N,N-dichloro-p-toluenesulfonamide and catalyst together with 4 Å molecular sieves at rt in any convenient vial of appropriate size without special protection from inert gases. Unlike the previous asymmetric aminohalogenation, the ionic liquid, [BMIM][NTf2], was found to be superior to [BMIM][BF4] as the reaction media. It was also found that palladium(II) acetate has to be used together with 1 equiv of MeCN to achieve the opposite chelation control. The resulting absolute stereochemistry of the product was unambiguously determined by X-ray structural analysis.  相似文献   

17.
The reaction of (tmeda)Pd(ClO4)2 (tmeda = N,N,N′,N′-tetramethylethylenediamine) with L (L = bis(4-(4-pyridylcarboxyl)phenyl)methane) affords the ionic cyclodimeric palladium(II) complex [(tmeda)Pd(L)]2(ClO4)4. The complex forms an unprecedented micro-sprout morphology via slow evaporation of acetone in a dilute concentration mixture of acetone and water without any template or additive. In contrast, the palladium(II) complex in a concentrated mixture forms uniform submicrospheres. The formation-process of the micro-sprout morphology has been explained in terms of a stepwise concentration effect. Furthermore, surface modifications and properties of the micro-sprouts via a typical anion exchange or sonication have been studied.  相似文献   

18.
The crystal structure of the title compound, (2,2′‐bipyridyl‐κ2N,N′)(tetra­allyl 3,3,3′,3′‐tetra­methyl‐1,1′‐bi­cyclo­propane‐1,1′,2,2′‐tetra­carboxyl­ato‐κ2C2,C2′)­palladium(II), [Pd(C26H32­O8)(C10­H8­N2)], is disordered above 194 K. A doubling of the unit cell is observed on cooling. The structure at 143 K contains two ordered mol­ecules related by a pseudo‐translation vector of approximately (0.44,0.00,0.50) or a pseudo‐inversion center at approximately (0.22,0.00,0.25). Weak intermolecular C—H?O interactions are enhanced in the low‐temperature structure.  相似文献   

19.
Palladium(II) complexes containing di-(2-pyridyl)-N-methylimine (1), di-(2-pyridyl)methanol (2) and di-(2-pyridyl)methyl-N,N-diethyldithiocarbamate (4) ligands were synthesized and characterized by 1H and 13C NMR in solution, IR and X-ray single crystal diffraction. Crystal structures of cis-dichloro[di-(2-pyridyl)-N-methylimine]palladium(II) (5), cis-dichloro[di-(2-pyridyl)methanol]palladium(II) (6) and cis-dichloro[di-(2-pyridyl)methyl-N,N-diethyldithiocarbamate]palladium(II) (7) showed a bidentate coordination mode of the di-(2-pyridyl)methane derivatives 1, 2 and 4. In these complexes is observed the formation of a five-membered chelate ring with the iminic ligand 1 and six-membered chelate rings with the pyridinic ligands 2 and 4. In all complexes the palladium atom displays a distorted square planar geometry.  相似文献   

20.
Dinuclear copper(II) complex with the general formula [(diamine)Cu(OH)]2(ClO4)2, where diamine stands for N,N-dialkyl,N′-benzyl-ethylenediamine, were prepared. The complexes were characterized by elemental analysis, spectroscopic, conductance measurements, and X-ray structural analysis. The complexes are soluble in various organic solvents and show positive solvatochromism. Thermochromism was also observed particularly in strong donor solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号