首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidation of the complexes trans-[M(CNR)2(dppe)2] (A) (M = Mo or W; R = Me, But or CH3C6H4-4; dppe = Ph2PCH2CH2PPh2) with diiodine or silver (I) salts gives the paramagnetic cations trans-[M(CNR)2(dppe)2]+, (M = Mo, R = CH3C6H4-4; M = W, R = But) and trans-[M(CNR)2(dppe)2]2+ (M = Mo, R = Me or CH3C6H4-4; M = W, R = Me or But). Mixtures of products are generally produced when dichlorine or dibromine are the oxidising agents, however pure salts, the seven-coordinate complex cations [MX(CNC6H4CH3-4)2(dppe)2]+ (B, X = Cl or Br) have been isolated. A simple molecular orbital scheme is proposed for complexes (A) and used to discuss their electronic spectra and their oxidation.  相似文献   

2.
The reactions of Os3(μ-H)2(CO)10 with a series of Group IB metal acetylide-tertiary phosphine complexes are described. Whereas the compounds M(C2C6F5)(PPh3) (M = Cu, Ag, Au) afforded the complexes MOs3(μ-CHCHC6F5)(CO)10(PPh3) cleanly and in high yield, complex mixtures of products were obtained from reactions of the analogous phenylacetylides. The complexes MOs3(μ-CHCHPh)(CO)10(PPh3), MOs3(μ-CHCHPh)(CO)9(PPh3)2 and MOs3(μ-H)(CO)10(PPh3) (of known structure), and MOs3(μ-CHCHPh)(CO)9(PPh3)2 and HMOs3(CHCPh)(CO)8 (of unknown structure) were characterised; Au(C2Ph)(PMe3) afforded similar derivatives. The reactions proceed by oxidative-addition and hydrogen migration steps; MP bond cleavage reactions also occur to a small extent. The molecular structures of AuOs3(μ-CHCHC6R5)(CO)10(PPh3) (R = F or H) were determined by X-ray analyses. For R = F, crystals are triclinic, space group P1 with a 9.081(2), b 13.291(2), c 17.419(2) Å, α 84.49(1), β 76.20(2), γ 75.81(2)° and Z = 2; 4622 observed data [I > 2.5σ(I)] were refined to R = 0.027, RW = 0.031. For R = H, crystals are triclinic, space group P1, with a 9.403(4), b 13.448(3), c 13.774(4) Å, α 83.34(2), β 88.66(3), γ 70.21(3)°, and Z = 2; 4405 observed data [I > 2.5σ(I)] were refined to R = 0.030, RW = 0.033. The two molecules differ in the orientation of the Ph rings of the PPh3 groups, but are otherwise similar to Os3(μ-H)(μ-CHCHBut)(CO)10 with the μ-H ligand replaced by the isolobal μ-Au(PPh3) group.  相似文献   

3.
The synthesis and properties of a series of trans-halocarbonylrhodium(I) complexes containing the phosphinoalkylorganosilicon ligands Me3SiCH2PPh2, Me3Si(CH2)3PPh2, and PPh2CH2(Me)Si(OSiMe2)3O have been investigated. The complexes could be prepared by an exchange reaction involving RhCl(CO)(PPh3)2 and the organosilicon ligands or in better yields by the reaction of Rh2Cl2(CO)4 with the ligands. Iodorhodium derivatives were obtained as the exclusive products in the latter reaction if a small amount of LiI was present. The catalytic activity of RhCl(CO)(PPh2CH2SiMe3)2 was similar to that of RhCl(CO)(PPh3)2 in the hydroformylation of hex-1-ene at 100°C and 1000 psi pressure of H2/CO. The catalytic properties of the iodo derivatives RhI(CO)L2 [L = Me3SiCH2PPh2, Me3Si(CH2)3PPh2, and PPh2CH2(Me)Si(OSiMe2)3O] varied considerably, with RhI(CO)(PPh2CH2SiMe3)2 producing an unexpectedly low linear/branched aldehyde product ratio.  相似文献   

4.
The osmium carbyne complex, Os(CR)Cl(CO)(PPh3)2, (R  p-tolyl) reacts with Group I halides to form the mixed dimetallocyclopropene species, Os(Cul)(CR)Cl(CO)(PPh3)2, Os(AgCl)(CR)Cl(CO)(PPh3)2, Os(AuCl)(CR)Cl(CO)(PPh3)2, and [Os[Ag(OClO3)](CR)Cl(CO)(MeCN)(PPh3)2] ClO4 X-ray crystal structure determination of Os(AgCl)(CR)Cl(CO)(PPh3)2 confirms the presence of a three-membered ring and the structure can be viewed as the “acetylene-like” interaction of an osmium—carbon triple bond with AgCl. In acid solution AgCl is precipitated and an alkylidene complex results from proton addition to the carbyne ligand.  相似文献   

5.
The tungsten complexes W(CO)4(NO)X, W(CO)3(NO)(PPh3)X and W(CO)2(NO)(PPh3)2X (X = Cl, Br and I) have been shown to be effective catalysts for the metathesis of 1,7-octadiene.  相似文献   

6.
The reaction of Pt(PPh3)4 with CH2Cl1 in benzene yields the cationic ylide complex cis-[Pt(PPh3)2(CH2PPh3)Cl]I in high yield. This complex has been converted to cis-[(PPh3)2(CH2PPh3)X]X (X  Br or I) by reaction with LiBr or NaI. Reaction of cis-[Pt(PPH3)I]I with iodine yields cis-[Pt(PPh3)2(CH2PPh3)I]I3. Nmr data are given in support of the suggested structures.  相似文献   

7.
The dark red octahydride complex of dirhenium, Re2H8(PPh3)4, undergoes a reversible one-electron oxidation to the blue mono-cation [Re2H8(PPh3)4]+ (Ebuit;12 ?0.24 V vs. SCE by cyclic voltammetry). The X-band ESR spectrum of a dichloromethane glass (?160°C) containing the monocation is in accord with the HOMO being a delocalized metal-based orbital. Treatment of the heptahydrides ReH7(PR3)2 (PR3 = PPh3 or PEtPh2) with C6H11NC or Me3CNC in the presence of KPF6 leads to the elimination of hydrogen and the formation of [Re(CNR)4(PR3)2]PF6. Electrochemical oxidation of ReH5(PPh3)2L (L = PPh3, PEt2Ph, pyridine, piperidine or cyclohexylamine) activities these molecules to attack by RNC to afford rhenium(I) species  相似文献   

8.
The reaction of IrH3(PPh3)2 with p-substituted aryldiazonium salts gives the compounds [IrH2(NHNC6H4R)(PPh3)2]+BF4- at low temperature (-10°C) and the o-metalated complexes [IrH(NHNC6H3R)(PPh3)2]+BF4- (R  F, OCH3) at 40–50°C. The reactions of the o-metalated complexes with CO, PPh3, NaI and HCl have been studied.  相似文献   

9.
[OS(η2-CS2Me)(CO)2(PPH3)2]+ and [Ir(η2-CS2Me)Cl(CO)(PPh3)2)+ react with NaBH4 giving OsH(CS2Me)(CO)2(PPh3)2 and IrH(CS2Me)Cl(CO)(PPh3)2 respectively; These compounds contain mutually cis hydride and η1-dithiomethylester ligands and upon heating undergo 1,2-elimination of MeSH producing Os(CS)(CO)2(PPh3)2 and IrCl(CS)(PPh3)2.  相似文献   

10.
The reactions of M2Cl4(PR3)4 derivatives (M  Mo, W and PR3  PEt3, PBu3n) with CO at atmospheric pressure in toluene at 70°C to afford M(CO)3(PR3)2Cl2 and trans-M(CO)4(PR3)2 are reported.  相似文献   

11.
The first phosphazide and monosubstituted triazenide complexes have been prepared by allowing either phenyl or p-tolylazide to react with WBr2 (CO)3(PPh3)2 and WH(CO)2(NO) (PPh3)2 under mild conditions to yield WBr2 (CO)3(RN3PPh3) and W(RN3H) (CO) (NO) (PPh3)2, respectively. The same arly azides react with W(CO)2 (S2CNEt2)2)(PPh3) to yield dinitrogen and the aryl nitrene complex, W(CO) (RN) (S2CNEt2)2. The coordinated RN3PR3 and RN3H3 are of special interest because they may aid understanding the mechanism of nitrene and amide formation from azides.  相似文献   

12.
A series of heterodinuclear complexes with acetylene dithiolate (acdt2?) as the bridging moiety were synthesised by a facile one‐pot procedure that avoided use of the highly elusive acetylene dithiol. Generation of the W–Ru complex [Tp′W(CN)(CO)(C2S2)Ru(η5‐C5H5)(PPh3)] (Tp’=hydrotris(3,5‐dimethylpyrazolyl)borate) and the W–Pd complexes [Tp′W(CN)(CO)(C2S2)Pd(dppe)] and [Tp′W(CO)2(C2S2)Pd(dppe)][PF6] (dppe=1,2‐bis(diphenylphoshino)ethane), which exhibit a [W(η2‐κ2‐C2S2)M] core (M=Ru, Pd), was accomplished by using a transition‐metal‐assisted solvolytical removal of the Me3Si‐ethyl thiol protecting groups. All intermediate species of the reaction have been fully characterised. The highly coloured W–Ru complex [Tp′W(CN)(CO)(C2S2)Ru(η5‐C5H5)(PPh3)] shows reversible redox chemistry, as does the prototype complex [Tp′W(CO)2(C2S2)Ru(η5‐C5H5)(PPh3)][PF6]. Single crystal X‐ray diffraction and IR, EPR and UV/Vis spectroscopic studies in conjunction with DFT calculations prove the high electronic delocalisation of states over the acdt2? linker. Comparative studies revealed a higher donor strength and more pronounced dithiolate character of acdt2? in [Tp′W(CN)(CO)(C2S2)Ru(η5‐C5H5)(PPh3)] relative to [Tp′W(CO)2(C2S2)Ru(η5‐C5H5)(PPh3)]+. In addition, the influence of the overall complex charge on the metric parameters was investigated by single‐crystal X‐ray diffraction studies with the W–Pd complexes [Tp′WL2(C2S2)Pd(dppe)] (L=(CN?)(CO) or (CO)2). The central [W(C2S2)Pd] units exhibit high structural similarity, which indicates the extensive delocalisation of charge over both metals.  相似文献   

13.
Addition of Cationic Lewis Acids [M′Ln]+ (M′Ln = Fe(CO)2Cp, Fe(CO)(PPh3)Cp, Ru(PPh3)2Cp, Re(CO)5, Pt(PPh3)2, W(CO)3Cp to the Anionic Thiocarbonyl Complexes [HB(pz)3(OC)2M(CS)] (M = Mo, W; pz = 3,5‐dimethylpyrazol‐1‐yl) Adducts from Organometallic Lewis Acids [Fe(CO)2Cp]+, [Fe(CO)(PPh3)Cp]+, [Ru(PPh3)2Cp]+, [Re(CO)5]+, [ Pt(PPh3)2]+, [W(CO)3Cp]+ and the anionic thiocarbonyl complexes [HB(pz)3(OC)2M(CS)] (M = Mo, W) have been prepared. Their spectroscopic data indicate that the addition of the cations occurs at the sulphur atom to give end‐to‐end thiocarbonyl bridged complexes [HB(pz)3(OC)2MCSM′Ln].  相似文献   

14.
The reactions of the substituted Group VI metal carbonyls of the type M(CO)4(2-Mepy)2 (M = Mo, w) and M(CO)3(L)3 (L = py, M = Mo, W; L = NH3, M = Mo) with mercuric derivatives HgX2 (X = Cl, CN, SCN) have given rise to three series of tricarbonyl complexes: M(CO)3(py)HgCl2 · 1/2HgCl2 (M = Mo, W); 2[M(CO)3(L)]Hg(CN)·nHg(CN)x (L = py, M = Mo, W, n = 12, × = 2; L = 2- Mepy, × = 1; M = Mo, n = 3; M = W, n = 1); and [M(CO)3(L)Hg(SCN)2 · nHg(SCN)2] (L = py, M = Mo,W, n = 0; L = 2-Mepy, M = Mo, W, n = 12; L = NH3, M = Mo, n = 0) depending on which mercuric compound is employed. All the reactions with Hg(SCN)2 give isolable products whereas those with Hg(CN)2 and HgCl2 did so far only the reactions with [M(CO)4(2-Mepy)2] and M(CO)3(py)3. The greater reactivity of Hg(SCN)2 than of Hg(CN)2 and HgCl2 is consistent with the various acceptor capacities of the groups bonded to the mercury atom.The reactions studied always involve displacement of the N-donor ligand of the original complex and partial or total displacement of the halide or pseudohalide groups of the mercury compound to give in all cases compounds containing MHg bonds. In addition, elimination of a CO group in the tetracarbonyl complexes M(CO)4(2-Mepy)2occurs.  相似文献   

15.
A new ruthenium-rhodium mixed-metal cluster HRuRh3(CO)12 and its derivatives HRuRh3(CO)10(PPh3)2 and HRuCo3(CO)10(PPh3)2 have been synthesized and characterized. The following crystal and molecular structures are reported: HRuRh3(CO)12: monoclinic, space group P21/c, a 9.230(4), b 11.790(5), c 17.124(9) Å, β 91.29(4)°, Z = 4; HRuRh3(CO)10(PPh3)2·C6H14: triclinic, space group P1, a 11.777(2), b 14.079(2), c 17.010(2) Å, α 86.99(1), β 76.91(1), γ 72.49(1)°, Z = 2; HRuCo3(CO)10(PPh3)2·CH2Cl2: triclinic, space group P1, a 11.577(7), b 13.729(7), c 16.777(10) Å, α 81.39(4), β 77.84(5), γ 65.56°, Z = 2. The reaction between Rh(CO)4? and (Ru(CO)3Cl2)2 tetrahydrofuran followed by acid treatment yields HRuRh3(CO)12 in high yield. Its structural analysis was complicated by a 80–20% packing disorder. More detailed structural data were obtained from the fully ordered structure of HRuRh3(CO)10(PPh3)2, which is closely related to HRuCo3(CO)10(PPh3)2 and HFeCo3(CO)10(PPh3)2. The phosphines are axially coordinated.  相似文献   

16.
Hydrotris(3, 5‐dimethylpyrazol‐1‐yl)borate and hydrotris(3‐phenylpyrazol‐1‐yl)borate decompose during reactions with [ReOCl3(PPh3)2] and [NEt4]2[Re(CO)3Br3], respectively. The generated pyrazole ligands form complexes with the rhenium(V) oxo and the rhenium(I ) tricarbonyl cores. X‐ray crystal structures of the oxo‐bridged dimer [Cl(PPh3)(O)Re(μ‐O)(μ‐Me2pz)2Re(O)(HMe2pz)Cl] ( 1 ) and [Re(CO)3(HPhpz)2(Phpz)] ( 2 ) (HMe2pz = 3, 5‐dimethylpyrazole, HPhpz = 3‐phenylpyrazole) show that the substituted pyrazoles can readily deprotonate and act as monodentate or bridging anionic ligands. Re‐N bond lengths between 2.09 and 2.14Å have been observed for the bridging and between 2.12 and 2.23Å for the terminal pyrazole ligands.  相似文献   

17.
Acetatobis(triphenylphosphine)dicarbonylrhenium (I), (PPh3)2(CO)2Re(O2CCH3), has been prepared in a novel way by treating (PPh3)2(CO)2Re(NHCOR) (R = C6H5, p-MeC6H4) with triethylamine and water in the presence of air. Oxidation of the ethyl group of the tertiary amine is presumably involved in the formation of the acetate ligand. Three-dimensional single-crystal X-ray diffraction analysis shows that the complex is octahedral with the phosphines in trans positions and the acetate ion acting as a chelating ligand. The complex crystallizes in theP21/c space group with cell dimensions a = 17.63(2), b = 9.72(1), c = 20.95(2)Å, β = 104°38'(6'), Z = 4. The mean values of bond lengths observed are Re-P 2.415, Re-O 2.21 and Re-(CO) 1.85Å. The same acetate derivative and a series of car?ylato complexes (PPh3)2(CO)2Re(O2CR') have been obtained from reactions of Re(CO)2(PPh3)3H with car?ylic acids R'COOH (R' = H, CH3, CH2Cl, CH2CH3, C6H5). When trifluoroacetic acid is used, a product of formula (PPh3)2(CO)3Re(OC(O)CF3) is isolated. The action of neutral ligands L on some of these products gave rise to derivatives of formula (PPh3)2(CO)2(L)Re(OC(O)R') (L = CO, R' = H, CH3, C6H5; L = pMeC6H4NC, R' = CH3), having monodentate car?ylato moieties.  相似文献   

18.
Chloride-bridged tungsten tricarbonylmetalates [(OC)3W(Cl)3W(CO)3]3?, obtainable in high yields from tungsten hexacarbonyl and tetraalkylammonium chlorides, with allyl halides give π-allylhalogenotungsten dicarbonyls. With phosphines reductive elimination of allylhalide yields bis- or tris-(phosphine)-tungsten-dicarbonyls L2W(PR3)2(CO)2, LW(PR3)P3(CO)2 (L = CH3CN). Substitution reactions of L with various ligands under mild conditions are described. IR and electronic spectra of more than twenty new compouonds are discussed and compared with corresponding compounds of molybdenum.  相似文献   

19.
A series of heteronuclear nickel‐iron complexes [Fe2(CO)6(μ‐SH)(μ3‐S){NiCl(PPh3)2}] ( 1 ), [Fe2(CO)6(μ‐SH)(μ3‐S){NiCl(dppe)}] ( 2 ), [Fe2(CO)63‐S)2{Ni(PPh3)2}] ( 3 ), [Fe2(CO)63‐S)2{Ni(dppe)}] ( 4 ) and [Fe2(CO)6(μ‐SPh)(μ3‐S){NiCl(dppe)}] ( 5 ) have been prepared. The structure of 4 has been determined by X‐ray crystallography. The central metal‐sulfur core of 4 has a trigonal bipyramidal shape with a NiFe2 base plane with two axial sulfur atoms. Each iron atom is 5‐coordinate forming a distorted square pyramid; the nickel is square planar coordinated by two sulfur atoms and two phosphorus atoms.  相似文献   

20.
The electrochemical behaviour of thio and phosphido complexes of iron(I): Fe2XY(CO)6nLn (X = Y = SR, PR2 and X = SR, Y = PR2, L = PR3) has been studied on platinum and mercury electrodes, in organic solvent. These complexes are reduced in a two-electron irreversible process. A large difference is observed between their oxidation potentials on mercury and platinum electrodes; this is ascribed to the formation of a mercury complex in which mercury is inserted into the metalmetal bond. In oxidation on platinum electrodes, two mono-electronic waves are observed. The influece of the ligand basicity on the cathodic E12 values is discussed. A parallel shift is observed between the E12 and the IR ν(CO) of the totally symmetrical mode. Chemical oxidation of the complexes shows that the dications cannot be isolated, and leads to isolation of the following species: [FeP(CH3)2(CO)3]2AgNO3, [FeSCH3(CO)2P(CH3)3]2(NO3)2, {[FeSCH3(CO)2P(CH3)3]2F} PF6, where NO3? and F? act as ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号