首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interesting bioactivities of 2(5H)-furanone, 1,2,3-triazole, and amino acid derivatives have promoted their combination into one multifunctional molecule. The symmetrical bis-1,2,3-triazoles and mono-1,2,3-triazoles with one free azide group are synthesized respectively by controlling the molar ratio of reactants, N-[5-alkoxy-2(5H)-furanonyl] amino acid propargyl ester and 1,4-diazidobutane. The unsymmetrical bis-1,2,3-triazoles are afforded by the subsequent reaction of mono-1,2,3-triazoles with other terminal alkynes with good to excellent yields in a short time under the same mild “click” reaction conditions. The 32 new compounds obtained in the reactions are characterized by Fourier transform infrared, 1H NMR, 13C NMR, mass spectrometry, and elemental analysis. Because of the diversity of four or five basic units in molecule, this methodology provides easy access to different chiral 2(5H)-furanone compounds with polyheterocyclic structure, especially with unsymmetrical bis-1,2,3-triazole moiety. Importantly, a simple approach is provided for the synthesis of unsymmetrical bis-1,2,3-triazoles using common diazides.  相似文献   

2.
Using a variety of functionalization strategies, derivatives of 4, 4′‐bis(5‐nitro‐1,2,3‐2H‐triazole) were designed, synthesized, and characterized. The isomers were separated, their structures were confirmed with single‐crystal X‐ray analysis, and their properties were determined by differential scanning calorimetry, density, impact sensitivity, heat of formation, and detonation velocity and pressure (calculated by EXPLO5 V6.01). Those materials were found to exhibit superior detonation performance when compared with the other fully carbon‐nitrated bis(azoles).  相似文献   

3.
4‐Halo‐2(5H)‐furanones were prepared by the halolactonization of 2,3‐allenoic acids. The subsequent Suzuki coupling reaction of 4‐halo 2(5H)‐furanones with aryl boronic acids was carried out to produce 4‐aryl‐2(5H)‐furanones in excellent yields.  相似文献   

4.
An efficient synthesis of novel mono and bis‐1,2,3‐triazoles 3′‐azido‐2′‐deoxythymidine (AZT) derivatives via copper(I)‐catalyzed 1,3‐dipolar cycloaddition reaction is described. Starting from AZT and terminal alkyne derivatives, mono and bis‐1,2,3‐triazole AZT derivatives are regioselectively obtained in good yields under mild conditions using CuSO4·5H2O and sodium ascorbate as a catalyst system, and t‐BuOH/H2O (1:1, v/v) as a co‐solvent. The structures of these compounds were elucidated by IR, HR MS and NMR.  相似文献   

5.
4‐Amino‐5‐nitro‐1,2,3‐triazole (ANTZ) and its derivatives, such as 2‐(4‐amino‐5‐nitro‐1,2,3‐trazole‐1‐yl)‐1,3,5‐trinitrobenzene (T‐ANTZ) and 4‐amino‐5‐nitro‐1,2,3‐triazole (M‐ANTZ), were synthesized and characterized, whose structures were confirmed by IR, NMR and elemental analysis. The thermal behaviors of ANTZ, T‐ANTZ and M‐ANTZ were studied by the methods of DSC and TG‐DTG, and the results showed that there is an obvious melting process of ANTZ with melting point of 278.38°C, while there is no melting process in the thermal behavior of T‐ANTZ and M‐ANTZ (the derivatives of ATNZ).  相似文献   

6.
α‐Chloroformylarylhydrazones 1 and α‐chloroformylarylhydrazones of sydnonecarbaldehydes 3 have been prepared by a new synthetic route: α‐chloroformylarylhydrazines hydrochlorides 2 reacted with corresponding carbonyl compounds. Reactions of compounds 3 with various hydrazines to give 6‐sydnonyl‐1,2,4,5‐tetrazinan‐3‐ones 7 and/or carbazones 8 were also investigated. By oxidization with lead dioxide, compounds 7 were trans formed to stable 6‐sydnonyl‐3,4‐dihydro‐3‐oxo‐1,2,4,5‐tetrazin‐1(2H)‐yl radical derivatives 9 (sydnonyl verdazyls). Furthermore, sydnonecarbaldehydes arylhydrazones 5 through acidic conditions could be transferred to 4‐arylamino‐1,2,3‐triazoles 6 which were also obtained by means of acidic decompositions of 4‐formylsydnones 10 .  相似文献   

7.
A series of novel phthalic diamide derivatives containing 1,2,3‐triazole moiety were synthesized using one‐pot click chemistry approach and characterized by 1H NMR and HRMS. The insecticidal activity against armyworm (Mythimna separata), Tetranychu scinnabarinus and cowpea aphid (Aphis craccivora) was evaluated. Compounds 4II‐a and 4II‐i showed 50% insecticidal activity against armyworm (Mythimna separata) at the concentration of 4 mg/L and one‐third of the compounds had moderate activity against Tetranychus cinnabarinus at 500 mg/L.  相似文献   

8.
Several quinazoline‐2(1H),4(3H)‐dione derivatives were synthesized from pyrimidine‐2(1H),4(3H)‐dione derivative.  相似文献   

9.
The synthesis of some new N‐[1‐(2,5‐dichlorophenyl)‐5‐methyl‐1,2,3‐triazol‐4‐yl]‐carbamic acid ester derivatives are reported in this paper. The yielded products 6a‐l were confirmed by Elemental analyses, NMR, MS, and IR spectra.  相似文献   

10.
A straightforward and expeditious monotopic approach for the preparation of 1,2,3‐triazolium‐based poly(ionic liquids) (TPILs) is reported. It is based on the solvent‐ and catalyst‐free polyaddition of an α‐azide‐ω‐alkyne monomer in the presence of methyl iodide or N‐methyl bis[(trifluoromethyl)sulfonyl]imide alkylating agents. Poly(1,2,3‐triazole)s generated in bulk or by thermal azide–alkyne cycloaddition (AAC) are quaternized in‐situ to afford TPILs composed of 1,3,4‐ and 1,3,5‐trisubstituted 1,2,3‐triazolium units. The physical and ion‐conducting properties of the prepared samples are compared with the TPILs composed solely of 1,3,4‐trisubstituted 1,2,3‐triazolium units obtained through a multistep approach involving copper(I)‐catalyzed AAC polyaddition, quaternization of the 1,2,3‐triazole groups, and anion metathesis. TPILs obtained through the monotopic approach display thermal stabilities and ionic conductivities comparable to their pure regioisomeric analogues.

  相似文献   


11.
3‐Aroyl‐2‐arylpropionic acids 2a‐e were utilized to synthesize 3(2H)‐pyridazinones 3a‐e and 2(3H)‐furanones 6 through reaction with hydrazine hydrate and freshly distilled acetic anhydride, respectively, in the hope of obtaining new 3(2H)‐pyridazinones with no ulcerogenic side effect or with negligible general side effects as those currently used NSAIDS as well as biologically active 2(3H)‐furanones.  相似文献   

12.
1‐Monosubstituted aliphatic 1,2,3‐triazoles were synthesized by a one‐pot reaction from aliphatic halides (Cl and Br), sodium azide and propiolic acid. The yields ranged from moderate to good. The reaction was easily carried out in DMF with Cs2CO3 at 100°C by copper‐catalyzed click cycloaddition/decarboxylation.  相似文献   

13.
The free radical reactivity ratios between styrene and different vinyl‐1,2,3‐triazole regioisomeric monomers in 1,4‐dioxane at 65 °C have been established using nonlinear least square method. The results obtained for the reactivity ratio between regioisomers show exceptionally different polymerization behavior, highlighting the effects of the electronic and steric factors of these regioisomeric monomers. The experimental results highlight the effects of the electronic and sterics on the copolymerization behavior. In case of 1,4‐vinyl‐triazoles, it was found that without the steric effects, the reactivity is very similar to that of styrene and forms random copolymers. However, it was found that 1,5‐vinyl‐triazoles are more reactive than 1,4‐vinyl triazoles. In the case of styrene‐co‐1,4‐vinyl‐1,2,3‐triazoles, the reactivity ratios were calculated to be rstyrene: r1‐octyl‐4‐vinyl‐triazole = 1.97:0.54, rstyrene : r1‐benzyl‐4‐vinyl‐triazole = 1.62:0.50, and rstyrene: r1‐methyl‐4‐vinyl‐triazole = 0.90:0.87. On the other hand, reactivity ratios for styrene‐co‐1,5‐vinyl‐1,2,3‐triazoles were found to be rstyrene: r1‐octyl‐5‐vinyl‐triazole = 0.13:0.66 and rstyrene: r1‐benzyl‐5‐vinyl‐triazole = 0.34:0.49. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3359–3364  相似文献   

14.
This work describes the synthesis of novel 1,2,3‐triazole‐4‐linked (2E,6E)‐2‐benzylidene‐6‐(4‐nitrobenzylidene)cyclo‐hexanones starting from cyclohexanone. 1‐(Cyclohex‐1‐en‐1‐yl)piperidine, the enamine from cyclohexanone and piperidine, reacted with 4‐nitrobenzaldehyde to obtain 2‐(4‐nitrobenzylidene)cyclohexanone. Condensation of the latter compound with (prop‐2‐yn‐1‐yloxy)benzaldehyde derivatives under acidic conditions gave (4‐nitrobenzylidene)‐[(prop‐2‐yn‐1‐yloxy)‐benzylidene]cyclohexanones. Finally, ‘click reaction’ of these derivatives and various organic azides led to the title compounds. All compounds were examined by MTT assay for cytotoxic activity in one human breast cancer cell line, MDA‐MB‐231.  相似文献   

15.
A safe, efficient, and improved procedure for the regioselective synthesis of 1‐(2‐hydroxyethyl)‐1H‐1,2,3‐triazole derivatives under ambient conditions is described. Terminal alkynes reacted with oxiranes and NaN3 in the presence of a copper(I) catalyst, which is prepared by in situ reduction of the copper(II) complex 4 with ascorbic acid, in H2O. The regioselective reactions exclusively gave the corresponding 1,4‐disubstituted 1H‐1,2,3‐triazoles in good to excellent yields. This procedure avoids the handling of organic azides as they are generated in situ, making this already powerful click process even more user‐friendly and safe. The remarkable features of this protocol are high yields, very short reaction times, a cleaner reaction profile in an environmentally benign solvent (H2O), its straightforwardness, and the use of nontoxic catalysts. Furthermore, the catalyst could be recovered and recycled by simple filtration of the reaction mixture and reused for ten consecutive trials without significant loss of catalytic activity. No metal‐complex leaching was observed after the consecutive catalytic reactions.  相似文献   

16.
李建晓  汪朝阳  薛福玲  罗时荷 《化学学报》2011,69(23):2835-2842
利用系列含烯二炔结构的2(5H)-呋喃酮衍生物与叠氮化钠发生串联的成环反应, 在优化的反应条件下, 即反应溶剂为DMF、反应时间48 h、反应温度30 ℃时、NaN3为1.5 equiv., 以中等产率(42%~62%)合成了系列新型的稠合三环2(5H)-呋喃酮衍生物, 其可以进一步高产率地(94%~96%)衍生为吡啶稠合的2(5H)-呋喃酮化合物. 所有新化合物的结构用IR, 1H NMR, 13C NMR, MS, 元素分析等方法进行了表征. 该串联反应合成途径简捷、反应条件温和, 无需添加催化剂, 可为具有含三唑结构的稠杂环化合物合成提供简便的途径.  相似文献   

17.
A series of novel 3‐((4‐(t‐butyl)‐2‐(2‐benzylidenehydrazinyl)thiazol‐5‐yl)methyl)quinolin‐2(1H)‐ones ( 7a – 7z ) were designed, synthesized and evaluated for their ability of inhibiting neuraminidase (NA) of in?uenza H1N1 virus. Some compounds displayed moderate influenza NA inhibitory activity. Compound 7l with the scaffold of 2‐(2‐(2‐methoxybenzylidene)hydrazinyl)thiazole was the best one, exhibiting moderate NA inhibitory activity with IC50 of 44.66 µmol/L. Structure‐activity relationship showed that compounds with methoxy or hydroxy groups at the ortho position, fluorine and nitro groups at the meta position and chlorine and bromine groups at the para position of phenyl ring were more active. Docking study indicated that compound 7l has important interactions with some key residues (including Asp151, Glu119, Arg292, Tyr406, and Asn347) and binds to 430‐cavity adjacent to NA active site.  相似文献   

18.
Substituted 2‐(benzylamino)‐2H‐1,4‐benzoxazin‐3(4H)‐ones are unstable under alkaline and acidic conditions, undergoing opening of the benzoxazinone ring. 2‐Bromo‐2H‐1,4‐benzoxazin‐3(4H)‐ones show similar degradation under alkaline conditions, while replacement of Br at C(2) to give 2‐hydroxy‐2H‐1,4‐benzoxazin‐3(4H)‐ones was observed only under mild alkaline conditions. Mechanisms of ring opening and degradation to 2‐aminophenol derivatives are proposed.  相似文献   

19.
Reported herein is the distal γ‐C(sp3)?H olefination of ketone derivatives and free carboxylic acids. Fine tuning of a previously reported imino‐acid directing group and using the ligand combination of a mono‐N‐protected amino acid (MPAA) and an electron‐deficient 2‐pyridone were critical for the γ‐C(sp3)?H olefination of ketone substrates. In addition, MPAAs enabled the γ‐C(sp3)?H olefination of free carboxylic acids to form diverse six‐membered lactones. Besides alkyl carboxylic acids, benzylic C(sp3)?H bonds also could be functionalized to form 3,4‐dihydroisocoumarin structures in a single step from 2‐methyl benzoic acid derivatives. The utility of these protocols was demonstrated in large scale reactions and diversification of the γ‐C(sp3)?H olefinated products.  相似文献   

20.
Whereas copper‐catalyzed azide–alkyne cycloaddition (CuAAC) between acetylated β‐D ‐glucosyl azide and alkyl or phenyl acetylenes led to the corresponding 4‐substituted 1‐glucosyl‐1,2,3‐triazoles in good yields, use of similar conditions but with 2 equiv CuI or CuBr led to the 5‐halogeno analogues (>71 %). In contrast, with 2 equiv CuCl and either propargyl acetate or phenyl acetylene, the major products (>56 %) displayed two 5,5′‐linked triazole rings resulting from homocoupling of the 1‐glucosyl‐4‐substituted 1,2,3‐triazoles. The 4‐phenyl substituted compounds (acetylated, O‐unprotected) and the acetylated 4‐acetoxymethyl derivative existed in solution as a single form (d.r.>95:5), as shown by NMR spectroscopic analysis. The two 4‐phenyl substituted structures were unambiguously identified for the first time by X‐ray diffraction analysis, as atropisomers with aR stereochemistry. This represents one of the first efficient and highly atropodiastereoselective approaches to glucose‐based bis‐triazoles as single atropisomers. The products were purified by standard silica gel chromatography. Through Sonogashira or Suzuki cross‐couplings, the 1‐glucosyl‐5‐halogeno‐1,2,3‐triazoles were efficiently converted into a library of 1,2,3‐triazoles of the 1‐glucosyl‐5‐substituted (alkynyl, aryl) type. Attempts to achieve Heck coupling to methyl acrylate failed, but a stable palladium‐associated triazole was isolated and analyzed by 1H NMR and MS. O‐Unprotected derivatives were tested as inhibitors of glycogen phosphorylase. The modest inhibition activities measured showed that 4,5‐disubstituted 1‐glucosyl‐1,2,3‐triazoles bind weakly to the enzyme. This suggests that such ligands do not fit the catalytic site or any other binding site of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号