首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reaction of pentadentate Schiff-base ligands, 1,3-bis(3-methoxysalicylideneamino)-2-propanol (H3msap) with manganese(II) salts afforded tetranuclear mixed-valent manganese complexes, [Mn4(msap)2(CH3CO2)3(CH3O)(H2O)]·H2O (1) and [Mn4(msap)2(C6H5CO2)3(CH3O)] (2), which were characterized by elemental analysis, infrared and diffused reflectance spectra and temperature dependence of magnetic susceptibilities (4.5–300 K). Single-crystal X-ray crystallography of these complexes showed that four manganese atoms are chelated by two Schiff-base ligands and further coordinated by synsyn bridging, synanti bridging, and monodentate or bidentate-carboxylato groups, forming a Y-shaped cluster made up of two MnII and two MnIII atoms. Diffused reflectance spectra are featureless, showing broad bands around at near-UV and visible regions. Magnetic moments decrease with lowering of temperature, showing an antiferromagnetic behavior of these complexes.  相似文献   

2.
Treatment of CpZrCl3 with 1 equiv of 2-(2H-benzo[d][1,2,3]triazol-2-yl)-4,6-di-tert-pentylphenol (LigH) in THF or toluene affords the monomeric complex C31H41Cl2N3O2Zr (1) or the dimeric complex C54H66Cl4N6O2Zr2 (2), respectively. THF can transform the dimeric 2 into monomeric 1 within a few minutes at room temperature. The reaction between LigH and 2 equiv of CpZrCl3 gave the novel dinuclear complex C32H38Cl5N3OZr2 (3), linked by three bridging chlorides. The monomeric complex C44H56Cl2N6O2Zr (4), containing two Lig and two Cl ligands, could be obtained by the reaction between 2 equiv of LigH and Zr(NMe2)4 in toluene and subsequent addition of Me3SiCl. The molecular structures of the complexes were determined by the single crystal X-ray crystallographic method. In the presence of methylalumoxane (MAO) as a cocatalyst, the four complexes synthesized were highly active for the polymerization of ethylene.  相似文献   

3.
The synthesis of 10-(nona-6,8-dionyl)-2,4,16,18-nonadecatetraone and 11-(deca-7,9-dionyl)-2,4,18,20-uncosatetraone is described. The former hexaketone was found to form a very stable manganese (III) chelate, which upon reduction was found to be kinetically inert toward ligand substitution unlike virtually all manganese II complexes.  相似文献   

4.
The three novel clusters [Mn6O4(OMe)2(OAc)4(Mesalim)4] (3), [Mn8O2(OH)2(OMe)12(OAc)2(Mesalim)4] (4), and [Fe10O4(OMe)14Cl2(Mesalim)6] (5) have been synthesized from a simple bidentate ligand HMesalim (HMesalim = methyl salicylimidate). Starting from the mononuclear complex [Mn(Mesalim)2(OAc)(MeOH)].MeOH (1), either the hexanuclear complex 3 or the octanuclear complex 4 is obtained after recrystallization, depending upon the reaction conditions and solvents used. Similarly, starting from the purple-colored mononuclear complex [Fe(Mesalim)2Cl] (2), the orange-colored decanuclear iron(III) cluster 5 has been obtained upon recrystallization from methanol. Complex 3, which could also be prepared directly from manganese acetate and the ligand, has a face-sharing double-cubane [Mn6O6] core, unique in transition metal chemistry. Compounds 4 and 5 are composed of [M3O4] partial cubanes. All complexes belong to a class of oxo-bridged cubic close-packed molecular clusters resembling the metal oxide/hydroxide ores. Complex 4 exhibits intramolecular ferromagnetic interactions, as evidenced from dc magnetic susceptibility studies (1.8-300 K), resulting in a high-spin ground state, probably with S(T) = 8. Complex 4 displays single molecule magnet behavior as indicated by frequency and temperature dependences of its ac susceptibility. An Arrhenius plot gave relatively large experimental activation energy of 36.0 K. The magnetic properties of complexes 3 and 5 are dominated by antiferromagnetic interactions leading to zero-spin ground states.  相似文献   

5.
The reaction of the bis-chelating ligand 1,2-bis(2,2'-bipyridine-6-yl)ethane (L) with the trinuclear species of formula [Mn(3)O(O(2)CR)(6)(py)(3)](ClO(4)) (R = Me (1); R = Et (2); R = Ph (3)) has afforded the new tetranuclear mixed-valent complexes [Mn(4)O(2)(O(2)CR)(4)L(2)](ClO(4))(2) (R = Me (4); R = Et (5); R = Ph (6)) and [Mn(4)O(2)(OMe)(3)(O(2)CR)(2)L(2)(MeOH)](ClO(4))(2) (R = Me (7); R = Et (8); R = Ph (9)). Complexes 4-6 were obtained in yields of 20%, 44%, and 37%, respectively. They are mixed-valent, with an average Mn oxidation state of +2.5. Complexes 7-9 were obtained in yields of 57%, 65%, and 70%, respectively. They are also mixed-valent, but with an average Mn oxidation state of +2.75. Complexes 4 x 2THF and 9 x 3MeOH x H(2)O crystallize in the triclinic space group P1 macro and contain [Mn(4)(mu(3)-O)(2)](6+) and [Mn(4)(mu(3)-O)(2)(mu-OMe)(2)](5+) cores, respectively, the latter being a new structural type in the family of Mn(4) complexes. Reactivity studies of 4-9 have shown that 4-6 can be converted into 7-9, respectively, and vice versa. The magnetic properties of 5 and 9 have been studied by dc and ac magnetic susceptibility techniques. Complex 5 displays antiferromagnetic coupling between its Mn ions resulting in a spin ground state of S = 0. Complex 9 also displays antiferromagnetic coupling, but the resulting ground state is S = (7)/(2), as confirmed by fitting magnetization versus field data collected for 9 at low temperatures, which gave S = (7)/(2), D = -0.77 cm(-1), and g = 1.79. Complex 9 exhibits a frequency-dependent out-of-phase ac susceptibility peak, indicative of the slow magnetization relaxation that is diagnostic of single-molecule magnetism behavior.  相似文献   

6.
Manganese complexes of 1,4,7-triazacyclononane with different substituents catalyze the selective epoxidation of a large number of olefins to epoxides with H2O2. The activities of complexes with methyl (L1), 2-hydroxybutyl (L2) and acetato (L3) substituents are compared. The effects of solvent and temperature on the epoxide yield are very different for the three complexes. It is proposed that these differences are related to the binding of the pendant arms in Mn---L2 and Mn---L3 complexes. In general, acetone or methanol are preferred solvents. Variations of stereoretention are also observed: with Mn---L1 in acetone, isomer scrambling occurs, while with Mn---L1 in methanol, the epoxidation is almost stereospecific. UV-visible and electron spin resonance spectroscopy are used to characterize the state of manganese under oxidizing conditions.  相似文献   

7.
Seven dinuclear platinum(II) complexes with a novel chiral tetradentate ligand, (1R,1′R,2R,2′R)‐N1,N1′‐(1,4‐phenylenebis(methylene))dicyclohexane‐1,2‐diamine, were designed, synthesized and spectrally characterized. All the complexes were evaluated for their in vitro cytotoxicity against human HepG‐2, A549, HCT‐116 and MCF‐7 cancer cell lines. The results indicated that all compounds showed positive biological activity against HepG‐2, A549 and HCT‐116 cancer cell lines. In particular, compounds D7 and D2 showed better activity than carboplatin against HepG‐2 and A549 and compound D7 also showed an activity close to that of oxaliplatin. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The extraction of the pertechnetate anion has been investigated in the systems tributylphosphate (TBP)—solvent (carbon tetrachloride, n-heptane, chloroform)—metal salt (uranyl nitrate and chloride, thorium nitrate)—ammonium salt. In the absence of a metal, the solvates HTeO4. iTBP (i=4) are extracted, while in the presence of uranium and thorium, the distribution of technetium corresponds to the formation of the mixed complexes: UO2(NO3)(TeO4)·2TBP, UO2Cl(TcO4)·2TBP and Th(NO3)3 (TcO1)·2TBP. The effective constants of the reactions H++TcO 4 +i(TBP)org←(HTcO1·iTBP)org, and (MLn·2TBP)org+TcO 4 ←(MLn−1TcO4·2TBP)org+L were established in the above systems. The extraction of pertechnetate ion is more effective when it is coordinated to a cation solvated by TBP than the extraction in the form of pertechnetate acid solvated by TBP.  相似文献   

9.
Redox events involving both metal and ligand sites are receiving increased attention since a number of biological processes direct redox equivalents toward functional residues. Metalloradical synthetic analogues remain scarce and require better definition of their mode of formation and subsequent operation. The trisamido-amine ligand [(RNC6H4)3N]3-, where R is the electron-rich 4-t-Bu Ph, is employed in this study to generate redox active residues in manganese and chromium complexes. Solutions of [(L1)Mn(II)-THF]- in THF are oxidized by dioxygen to afford [(L1re-1)Mn(III)-(O)2-Mn(III)(L1 re-1)]2-as the major product. The rare dinuclear manganese (III,III) core is stabilized by a rearranged ligand that has undergone an one-electron oxidative transformation, followed by retention of the oxidation equivalent as a pi radical in ano-diiminobenzosemiquinonate moiety. Magnetic studies indicate that the ligand-centered radical is stabilized by means of extended antiferromagnetic coupling between the S ) 1/2 radical and the adjacent S ) 2 Mn(III) site, as well as between the two Mn(III) centers via the dioxo bridge. Electrochemical and EPR data suggest that this system can store higher levels of oxidation potency. Entry to the corresponding Cr(III) chemistry is achieved by employing CrCl3 to access both[(L1)Cr(III)-THF] and [(L1re-1)Cr(III)-THF(Cl)], featuring the intact and the oxidatively rearranged ligands, respectively. The latter is generated by ligand-centered oxidation of the former compound. The rearranged ligand is perceived to be the product of an one-electron oxidation of the intact ligand to afford a metal-bound aminyl radical that subsequently mediates a radical 1,4-(N-to-N) aryl migration.  相似文献   

10.
New divalent Co, Ni, Zn and Cd pyrazinecarboxylate hydrazinates of the formulae M(pyzCOO)2·nN2H4·xH2O and Mpyz(COO)2·N2H4·xH2O obtained by the reaction of respective metal nitrate hydrates with 2-pyrazinecarboxylic (HpyzCOO)/2,3-pyrazinedicarboxylic (H2pyz(COO)2) acid and hydrazine hydrate have been characterized on the basis of analytical, spectroscopic (electronic and infrared), thermal and X-ray powder diffraction studies. The electronic spectroscopic data suggest that the cobalt and nickel complexes are of spin-free (high-spin) type with octahedral geometry. The IR absorption bands of N-N stretching in the range 980-972 cm-1 unambiguously prove the bidentate bridging nature of the N2H4 ligand. The hydrazinate complexes of 2,3-pyrazinedicarboxylate lose hydrazine molecule exothermally, whereas 2-pyrazinecarboxylate compounds lose the same endothermally. Further, all the complexes undergo endothermic (dehydration and/or dehydrazination) followed by exothermic decomposition except the Zn and Cd complexes of 2,3-pyrazinedicarboxylate, which show only exothermic decomposition. In order to know the isomorphic nature among the complexes, the X-ray powder patterns have been compared.  相似文献   

11.
Isocytosine (ICH; 1) exists in solution in an equilibrium of tautomers 1a and 1b with the N1 and N3 positions carrying the acidic proton, respectively. In the solid state, both tautomers coexist in a 1:1 ratio. As we show, the N3H tautomer 1b can selectively be crystallized in the presence of the model nucleobase 1-methylcytosine (1-MeC). The complex 1b x (1-MeC)2 x H2O (2) forms pairs through three hydrogen bonds between the components; hydrogen bonds between identical molecules are also formed, leading to an infinite tape structure. On the other hand, the N1H tautomer 1a co-crystallizes with protonated ICH to give [1a x ICH2]NO3 (3), again with three hydrogen bonds between the partners, yet the acidic proton is disordered over the two entities. With M(II)(dien) (M=Pt, Pd; dien=diethylenetriamine) preferential coordination of tautomer 1a through the N3 position is observed. DFT calculations, which were also extended to Pt(II)(tmeda) linkage isomers (tmeda=N,N,N',N'-tetramethylethylenediamine), suggest that intramolecular hydrogen bonding between the ICH tautomers and the co-ligands at M, while adding to the preference for N3 coordination, is not the major determining factor. Rather it is the inherently stronger Pt-N3 bond which favors complexation of 1a. With an excess of M(II)(dien), dinuclear species [M2(dien)2(IC-N1,N3)]3+ (M=Pd(II), 4 and Pt(II), 5) also form and were isolated as their ClO4(-) salts and structurally characterized. In strongly acidic medium 5 is converted to [Pt(dien)(ICH-N1)]2+ (6), that is, to the Pt(II) complex of tautomer 1b.  相似文献   

12.
13.
Summary Equilibrium studies of mixed ligand complexes of palladium(II) containing diethylenetriamine as a primary ligand and amino acids as secondary ligands were made by the pH titration method at 25° C and ionic strengthM=0.1. Different equilibrium constants, characteristic of binary and mixed ligand complexes were calculated and the chelation mode was deduced from conductivity measurements.  相似文献   

14.
A sterically hindered carboxylate ligand is used to synthesize the first transition metal complex containing both bis-mu-oxo and bis-mu-carboxylato groups, [Mn2(mu-O)2(mu-ArtolCO2)2(bpy)2]+. However, methyl substitution on the chelating bipyridine ligand results in the formation of a strikingly different and novel hexanuclear species, [Mn6(mu-O)4(mu3-O)4(mu-ArtolCO2)2(dmb)6]4+. Steric interactions between the bridging carboxylates and chelating pyridine-based ligands determine the nuclearity of the complexes formed.  相似文献   

15.
Two new binuclear complexes, [Mn2(μ-dmpo)2(SCN)4(H2O)2] (1) (where dmpo?=?3,5-dimethylpyridine N-oxide), [Mn2(μ-po)2(H2O)6I2]I2 (2) (where po?=?pyridine N-oxide), have been synthesized and their crystal structures determined by X-ray crystallography. Complexes 1 and 2 crystallize in monoclinic, space group P21/c, with unit cell dimensions a?=?8.8836(18)?Å, b?=?15.450(3)?Å, c?=?15.484(3)?Å, β?=?91.020(3)° for 1, and a?=?8.8352(13)?Å, b?=?17.927(3)?Å, c?=?8.3338(12)?Å, β?=?103.765(2)° for 2. In each binuclear complex two Mn(II) were bridged by two 3,5-dimethylpyridine N-oxides or by two pyridine N-oxides and the distances between the bridged Mn(II) ions are 3.599?Å for 1 and 3.552?Å for 2. Variable temperature (4–300?K) magnetic measurements were performed for 1 and the susceptibility data were fitted by using a binuclear Mn(II) magnetic coupling formula producing the 2J?=??2.17?cm?1.  相似文献   

16.
利用五羰基溴化锰和2-吡啶甲醛以及卤代苯胺通过一步法合成得到了3个含席夫碱配体的锰羰基配合物[Mn(CO)3(py(CH=N)ph-X)Br],其中X=Cl (1)、Br (2)、I (3),并采用核磁、X射线单晶衍射、红外光谱、紫外可见光谱和荧光光谱对其进行了表征。这类配合物在非光照下稳定,在可见光(LED蓝光、绿光和红光)作用下分解释放CO,可以作为光诱导的一氧化碳释放剂(photoCORMs)。研究表明蓝光是促进配合物分解释放CO的最有效光源。此外,CO释放动力学分析显示配合物分解释放CO过程符合一级动力学模型。配合物3的释放研究表明脱氧肌红蛋白能够捕捉所释放的CO。尽管这些配合物本身的细胞毒性(IC50)达到微摩尔级,但光照下的细胞兼容性有显著改善,上升为接近100微摩尔级。这些配合物具有荧光性质,在450 nm激发波长下在500~700 nm范围内发射一定强度的荧光,可以作为荧光标记物用以监测细胞或生物体内释放剂分布及CO释放情况。  相似文献   

17.
New dinuclear asymmetric ruthenium complexes of the type [(bpy)(2)Ru(5-CNphen)Ru(NH(3))(5)](4+/5+) (bpy = 2,2'-bipyridine; 5-CNphen = 5-cyano-1,10-phenanthroline) have been synthesized and characterized by spectroscopic, electrochemical, and photophysical techniques. The structure of the cation [(bpy)(2)Ru(5-CNphen)Ru(NH(3))(5)](4+) has been determined by X-ray diffraction. The mononuclear precursor [Ru(bpy)(2)(5-CNphen)](2+) has also been prepared and studied; while its properties as a photosensitizer are similar to those of [Ru(bpy)(3)](2+), its luminescence at room temperature is quenched by a factor of 5 in the mixed-valent species [(bpy)(2)Ru(II)(5-CNphen)Ru(III)(NH(3))(5)](5+), pointing to the occurrence of intramolecular electron-transfer processes that follow light excitation. From spectral data for the metal-to-metal charge-transfer transition Ru(II) --> Ru(III) in this latter complex, a slight electronic interaction (H(AB) = 190 cm(-1)) is disclosed between both metallic centers through the bridging 5-CNphen.  相似文献   

18.
19.
利用五羰基溴化锰和2-吡啶甲醛以及卤代苯胺通过一步法合成得到了3个含席夫碱配体的锰羰基配合物[Mn (CO)3(py (CH=N) ph-X) Br],其中X=Cl (1)、Br (2)、I (3),并采用核磁、X射线单晶衍射、红外光谱、紫外可见光谱和荧光光谱对其进行了表征。这类配合物在非光照下稳定,在可见光(LED蓝光、绿光和红光)作用下分解释放CO,可以作为光诱导的一氧化碳释放剂(photoCORMs)。研究表明蓝光是促进配合物分解释放CO的最有效光源。此外,CO释放动力学分析显示配合物分解释放CO过程符合一级动力学模型。配合物3的释放研究表明脱氧肌红蛋白能够捕捉所释放的CO。尽管这些配合物本身的细胞毒性(IC50)达到微摩尔级,但光照下的细胞兼容性有显著改善,上升为接近100微摩尔级。这些配合物具有荧光性质,在450 nm激发波长下在500~700 nm范围内发射一定强度的荧光,可以作为荧光标记物用以监测细胞或生物体内释放剂分布及CO释放情况。  相似文献   

20.
Summary A series of MnIII complexes with stoichiometry [MnLX](Y)2 have been synthesized utilizing an exogenous anionic ligand, X- = OAc, SCN or N3, and the hexadentate ligand N,N,N,N-tetrakis[2(benzimidazolyl) methyl-1,2-ethanediamine] and its N-octyl derivative. The vis. spectra of the compounds are in keeping with a pseudo-C 4v , symmetry for the MnIII ion, implying that all the pendant arms of the hexadentate ligand do not bind to the MnIII centre. Cyclic voltammetric studies reveal that the E 1/2 for the MnIII/MnIV couple shifts to positive values with SCN- as the anionic ligand, implying that this anion stabilizes the MnIII oxidation state, whereas E 1/2 data for N3 - reveals that the anion destabilizes the MnIII state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号