首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Polyhedron》1987,6(8):1703-1705
The acetone complex [Fe(CO)2(Me2CO)(η5-C5H5)][PF6] reacts with L (L = H2NNHCSNH2, cy-C5H10CNNHCSNH2, or R′R″CNNHCSNH2 where R′ = R″ = Me; R′ = H, R″ = Ph; R′ = H, R″ = p-NO2Ph; R′ = p-MePh) in refluxing trichloromethane to give the new complexes [Fe(CO)2L(η5-C5H5)][PF6]. The complexes are clearly coordinated through the sulphur atom since the thiosemicarbazide complex reacts with benzaldehyde to afford the corresponding thiosemicarbazone compound.  相似文献   

2.
Reactions of the phosphinoacetylenes RR′PCCR″ (R  R′  Ph, R″  H, CF3, Ph, Me, t-Bu; R  R′  C6F5, R″  Ph, Me; R  Ph, R′  Me, R″  Me) with Co2(CO)8 have been studied. Complexes of four types have been characterised: (A)(RR′PC2R″)CO2(CO)6 (R  R′  C6F5, R″  Ph, Me; R  R′  Ph, R″  t-Bu), (B) (RR′PC2R″)2Co4(CO)10 (R  R′  Ph, R″  H, CF3, Ph, Me; R  R′  C6F5, R″  Me; R  Ph, R′  Me, R″  Me), (C) (RR′PC2R″)2Co2(CO)6 (R  R′  Ph, R″  t-Bu), (D) (RR′P(O)C2R″)Co2(CO)6 (R  R′  Ph, R″  t-Bu; R  R′  C6F5, R  Ph). The complexes were characterised by microanalysis, IR, NMR and where possible mass spectra. Substitution reactions of the complexes with tertiary phosphites are described. In complexes of type (A) only the alkyne function is utilised whereas the tetranuclear compounds (B) have structures in which both alkyne and phosphorus moieties are coordinated. Compounds of type (C) are simple disubstituted phosphine complexes of Co2(CO)8 and those of type (D) are μ-alkyne derivatives of acetylenic phosphine oxides. The mechanism of formation of complexes of type (B) is discussed in the light of IR data.  相似文献   

3.
Selective Preparation of Twofold Diorganophosphido-bridged Metallatetrahedranes [Re2(MPR3)2(μ-PR2)2(CO)6] with Re2M2 Metal Core (M = Au, Ag) The reaction of the in situ prepared salt Li[Re2(AuPR)(μ-PR2)(CO)7Cl] (R = R′ = Cy ( 1 a ), R = Cy, R′ = Ph ( 1 b ), R = Ph, R′ = Cy ( 1 c ), R = Ph, R′ = Et ( 1 d ), R = Ph, R′ = Ph ( 1 e )) with one equivalent HPR in methanolic solution at room temperature yields the neutral cluster complexes [Re2(AuPR)(μ-PR2)(CO)7(ax-HPR) (R = R′ = R″ = Cy ( 2 a ), Ph ( 2 b ), R = R′ = Cy, R″ = Et ( 2 c ), R = Cy, R′ = R″ = Ph ( 2 d ), R = Cy, R′ = Ph, R″ = Et ( 2 e ), R = R″ = Ph, R′ = Et ( 2 f ), R = Ph, R′ = Cy, R″ = Et (2 g)). Photochemically induced these complexes react in the presence of the organic base DBU in THF solution to give the doubly phosphido bridged anions Li[Re2(AuPR)(μ-PR2)(μ-PR)(CO)6], which were characterized as salts PPh4[Re2(AuPR)(μ-PR2)(μ-PR)(CO)6] (R = R′ = R″ = Ph ( 3 a ), R = R′ = Ph, R″ = Cy ( 3 b ), R = Ph, R′ = Cy, R″ = Et ( 3 c ), R = R″ = Ph, R′ = Et ( 3 d )). These precursor complexes 3 then react with one equivalent of ClMPR (M = Au, Ag) to doubly phosphido bridged metallatetrahedranes [Re2(MPR3)2(μ-PR2)(μ-PR)(CO)6] (M = Au, R = R′ = R″ = Ph ( 4 a ), M = Au, R′ = Et, R = R″ = Ph ( 4 b ), M = Au, R = R′ = Ph, R″ = Cy ( 4 c ), M = Au, R = Cy, R′ = Ph, R″ = Et ( 4 d ), M = Ag, R = R′ = R″ = Ph ( 4 e )). All isolated cluster complexes were characterized and identified by the following analytical methods: NMR- (1H, 31P) and ν(CO) IR-spectroscopy and, additionally, complexes 2 b , 4 a and 4 e by X-ray structure analysis.  相似文献   

4.
The insertion reaction of CS2 with Mg(NR2)2 (R= Et, iPr), MgR′2 (R′= Et, Ph) and R″MgBr (R″= iPr, Ph) respectively lead solid products, Mg(S2CNR2)2(THF)n ( 1 : R= Et, n=2; 2 : R= iPr, n=1), Mg(S2C′R)2(THF)2 ( 3 : ′R= Et, 4 : ′R= Ph), BrMg(S2C″R) (THF)3 ( 5 : ″R= iPr, 6 : ″R= Ph) in which the inserted carbon disulfides act as terminal chelating ligands. These compounds were characterized with 1H, 13C NMR, IR spectroscopy, mass spectrometry, elemental analyses, and X‐ray crystallography.  相似文献   

5.
《Polyhedron》1999,18(5):729-733
Equimolar quantities of [Mo (CO) (η2-RC2R′)2Cp] [BF4] (R=R′=Me Ph R=Me R′=Ph) and L L′ or L″ {L L′ or L″= [WI2 (CO){PhP(CH2CH2PPh2)2-PP′} (η2-RC2R′)]} (L R=R′=Me L′ R=R′=Ph L″ R=Me R′=Ph) react in CH2Cl2 at room temperature to give the new bimetallic complexes[Mo (CO) (L L′ or L″–P) (η2-RC2R′)Cp] [BF4] (1–9) via displacement of the alkyne ligand on the molybdenum centre The complexes have been characterised by elemental analysis IR and 1 H NMR spectroscopy and in selected cases by 31 P NMR spectroscopy.  相似文献   

6.
《Polyhedron》1988,7(18):1719-1724
Reaction of [MoX(CO2(NCMe)23-C3H4R)] in CH2Cl2 at room temperature with an equimolar quantity of (R′R″)CNNHCONH2 gave high yields of the bidentate coordinated semicarbazone complexes [MoX(CO)2{(R′R″)CNNHCONH2}(η3-C3H4R)] (X = Cl, Br or I; R = H or Me; R′,R″ = H or Me and Me, Et, nPr or Ph) via displacement of two acetonitrile ligands.  相似文献   

7.
A series of N-[chloro(diorganyl)silyl]anilines RR′Si(NR″Ph)Cl (R, R′ = Me, Ph, CH2=CH, ClCH2, Cl(CH2)3; R″ = H, Me) was prepared via the reaction of diorganyldichlorosilanes with aniline or N-ethylaniline in the presence of triethylamine.  相似文献   

8.
Photolysis of a benzene solution containing [Fe3(CO)93-E)2] (E=S, Se), [(η5-C5R5)Fe(CO)2(CCRI)] (R=H, Me; RI=Ph, Fc), H2O and Et3N results in formation of new metal clusters [(η5-C5R5)Fe3(CO)63-E)(μ3-ECCH2RI)] (R=H, RI=Ph, E=S 1 or Se 2; R=Me, RI=Ph, E=S 3 or Se 4; R=H, RI=Fc, E=S 5; R=Me, RI=Fc, E=S 6 or Se 7). Reaction of [Fe3(CO)93-S)2]with [(η5-C5R5)Mo(CO)3(CCPh)] (R=H, Me), under same conditions, produces mixed-metal clusters [(η5-C5R5)MoFe2(CO)63-S)(μ-SCCH2Ph)] (R=H 8; R=Me 9). Compounds 19 have been characterised by IR and 1H and 13C-NMR spectroscopy. Structures of 1, 5 and 9 have been established crystallographically. A common feature in all these products is the formation of new C-chalcogen bond to give rise to a (ECCH2RI) ligand.  相似文献   

9.
Reaction of the complexes [(CO)3Co(μ-RC2R′)Co(CO)3] (R = R′ = CF3; R = Ph, CF3 and R′ = H) with the MoMo dinuclear derivative [Mo2Cp2(μ-SMe)2(CO)2] leads to cleavage of both CS and CH bonds with the formation of closo-octahedral Mo2CO2C2 clusters stabilised by a μ42-bound alkyne. An X-ray diffraction study has shown that the two Mo2Co faces of the octahedron are capped by triply-bridging sulphur atoms.  相似文献   

10.
Treatment of a solution of [Os3(CO)10(R2C2)] (R = Me (1, R = Ph (2)) in CH2Cl2 with Me3No/MeCN in the presence of R′2C2 affords the new organometallic cluster [Os3(CO)8(R2C2)(R′2C2)] (R = R′ = Me (3), R = R′ = Ph (4) and R = Ph, R′ = Me (5)). A single crystal X-ray analysis of compound 4 has established a triangular metal framework with both the alkyne units coordinated in a μ32-6-mode. In toluene, at 80°C, compound 4 undergoes rearrangement to the known compound, [Os3H(CO)8(Ph)C2(C6H4))] (6) in which CC bond formation has occurred to produce an osmacyclopentadiene ring.  相似文献   

11.
The in situ reactions of the [Et3NH]+ and [MgBr]+ salts of [(μ-RSe)(μ-CO)Fe2(CO)6] (1) anions with PhC(Cl)NPh gave single butterfly complexes (μ-RSe)(μ-PhCNPh)Fe2(CO)6 (2, R=Ph; 3, R=p-MeC6H4; 4, R=Et), whereas those of the [Et3NH]+ salts of 1 with R′NCS afforded single butterfly complexes (μ-RSe)[μ-R′N(H)CS]Fe2(CO)6 (5, R=Ph, R′=Ph; 6, R=p-MeC6H4 R′=Ph; 7, R=p-MeC6H4, R′=PhCO; 8, R=p-MeC6H4, R′=PhCH2). Compound 8 could also be prepared by reaction of the [MgBr]+ salt of 1 (R=p-MeC6H4) with PhCH2NCS followed by treatment with CF3CO2H. More interestingly, while the [Et3NH]+ salt of 1 (R=Ph) reacted with Et3OBF4 to give a carbyne ligand-bridged single butterfly complex (μ-PhSe)(μ-EtOC)Fe2(CO)6 (9), reaction of the [Et3NH]+ salt of 1 (R=Ph) with MeAsI2 produced a MeAsAsMe ligand-bridged double butterfly complex [(μ-PhSe)(μ-MeAs)Fe2(CO)6]2 (10). All the new complexes, 210, were characterized by elemental analysis and various spectroscopic methods, for complexes 8 and 10, the structures were also confirmed by X-ray diffraction techniques.  相似文献   

12.
The 13C chemical shifts and 13C−119Sn, 117Sn coupling constants for several organotin(IV) compounds RxSnCl4−x (R = Me, Bun, Ph; x = 1−4) have been measured in both inert (CDCl3) and donor (DMSO-d6) solvents, as have 13C data for the compounds RxSnR′4−x (R = Me, Ph; R′ = Bun and R = Me; R′ = Ph; x = 1−3) and the compounds Me3SnX (X = pseudo halide). The δ and 1J(C-Sn) values appear to depend mainly on the type and number of substituents on tin and the donor ability of the solvent. There are linear relationships between the number of substituents (x) and both δ and 1J(C-119Sn) for almost the RxSnX4−x series (R = Me, Bun, Ph; X = Cl and R = Me, Bun; X = Ph; x = 1−4), when measured in a single solvent, e.g. CDCl3. There is an excellent linear relationship between 1J(C-119Sn) and 2J(1HC-119Sn) for the compounds MexSnCl4−x. Determination of 13C data for Me3SnCl and Ph3SnCl in a range of solvents reveals that the value of 1J(C-Sn) increases with the donor ability of the solvent.The marked increase in the values of 1J(C-119Sn) in DMSO-d6 for the compounds RxSnCl4−x(R = Me, Bun,Ph) on going progressively from x = 4 to x = suggest tin coordination numbers of 4, 5, 6 and 6, respectively. Some additional physical data are presented for the isolated complexes from DMSO and the compounds PhxSnCl4−x(x = 1−3) and Me3SnX with X = N3 or OCOMe.  相似文献   

13.
The reaction of the [Fe2(CO)6(μ-S)2]2? anion (prepared in situ by reduction of [Fe2(CO)6(μ-S2)] with Na/K alloy) with [Cp″RhCl2]2 (Cp″ = η5-(1,3-But 2)C5H3) and [Cp*Ir(CH3CN)3](CF3SO3)2 (Cp* is pentamethylcyclopentadienide) yielded new heterometallic clusters [Fe2(MCp x )(CO)63-S)2]. The core of the resulting clusters can be described as the distorted [Fe2S2M] square pyramid with the M atom in the apical position. The structures of the clusters were established by X-ray diffraction.  相似文献   

14.
Rh2(CO)4(OR)2 complexes (R = Me, Et, Pr, i-pent, Ph, p-chlorophenyl) were prepared from Rh2(CO)4Cl2 and sodium alcoholates or phenolates. They are converted by phosphines into the monomeric Rh(CO)(PR′3)2(OR) derivatives (R′ = Bu, Ph) via Rh2(CO)3(PR′3)(OR)2 intermediates.  相似文献   

15.
Fe2(CO)9 and R2P(S)P(S)R2 (R = Et, n-Pr, n-Bu, Ph) react to form two types of cluster complexes Fe3(CO)93-S)2 (1), Fe2(CO)6(μ-SPR2)2 (2A)–(2D), [2A, R = Et; 2B, R = n-Pr; 2C, R = n-Bu; 2D, R = Ph]. The complexes result from phosphorus–phosphorus bond scission; in the former sulfur abstraction has also occurred. The complexes have been characterized by elemental analyses, FT-IR and 31P-[1H]-NMR spectroscopy and mass spectrometry.  相似文献   

16.
《Polyhedron》1986,5(4):951-958
The chromium(0) complexes Cr(CO)3(CNR)(R′-DAB) (R = Me, CHMe2, CMe3, or xylyl; R′ = i-Pr, t-Bu, Cy or p-tol) can be prepared by the reaction of Cr(CO)3(NCMe)3 with equimolar quantities of R′-DAB and RNC. These complexes are oxidized to the paramagnetic 17-electron salts [Cr(CO)3(CNR)(R′-DAB)]PF6 by [(η5-C5H5)2Fe]Pf6 in ethanol, and can be reduced to the paramagnetic 19-electron radical anions [Cr(CO)3(CNR)(R′-DAB)] using NaHg in tetrahydrofuran. The spectroscopic (IR, 1H NMR, electronic absorption and ESR) and electrochemical properties of the [Cr(CO)3(CNR)(R′-DAB)]1+,0,1′ species (where appropriate) have been recorded. The dark red monocationic species [Cr(CO)3(CNR)(R′-DAB)]PF6 are subject to disproportionation in solution to give separable mixtures of dark blue Cr(CO)3(CNR)(R′-DAB) and green [Cr(CNR)4(R′-DAB)](PF6)2.  相似文献   

17.
The reactions of the organometallic 1,4-diazabutadienes, RN=C(R′)C(Me)=NR″ [R = R″ = p-C6H4OMe, R′ = trans-PdCl(PPh3)2 (DAB); R = p-C6H4OMe, R″ = Me, R′ = trans-PdCl(PPh3)2 (DABI; R = R″ = p-C6H4OMe, R′ = Pd(dmtc)-(PPh3), dmtc = dimethyldithiocarbamate (DABII); R = R″ = p-C6H4OMe, R′ = PdCl(diphos), diphos = 1,2-bis(diphenylphosphino)ethane (DABIII)] with [RhCl(COD)]2 (COD = 1,5-cyclooctadiene, Pd/Rh ratio = 12) depend on the nature of the ancillary ligands at the Pd atom in group R′. In the reactions with DAB and DABI transfer of one PPh3 ligand from Pd to Rh occurs yielding [RhCl(COD)(PPh3)] and the new binuclear complexes [Rh(COD) {RN=C(R?)-C(Me)=NR″}], in which the diazabutadiene moiety acts as a chelating bidentate ligand. Exchange of ligands between the two different metallic centers also occurs in the reaction with DABII. In this case, the migration of the bidentate dmtc anion yields [Rh(COD)Pdmtc] and [Rh(COD) {RN=C(R?)C(Me)=NR″}]. In contrast, the reaction with DABIII leads to the ionic product [Rh(COD)- (DABIII)][RhCl2(COD)], with no transfer of ligands. The cationic complex [Rh(COD)(DABIII)]+ can be isolated as the perchlorate salt from the same reaction (Pd/Rh ratio = 1/1) in the presence of an excess of NaClO4. In all the binuclear complexes the coordinated 1,5-cyclooctadiene can be readily displaced by carbon monoxide to give the corresponding dicarbonyl derivatives. The reaction of [RhCl(CO)2]2 with DAB and/or DABI yields trinuclear complexes of the type [RhCl(CO)2]2(DAB), in which the diazabutadiene group acts as a bridging bidentate ligand. Some reactions of the organic diazabutadiene RN=C(Me)C(Me)=NR (R = p-C6H4OMe) are also reported for comparison.  相似文献   

18.
Group 16 elements serve as useful bridging and stabilising single atom ligands in mixed-metal carbonyl complexes and impart unusual reactivity on coordinated acetylenic moieties. Reactions of [Fe 3 (CO) 9 3 -E) 2 ] (E = S, or Se) with mononuclear acetylide complexes, [CpM(CO)_3-x(CCR)] (M = Mo or W, x = 0, R = Ph; M = Fe, x = 1, R = Ph or ferrocenyl) under facile conditions yield complexes featuring acetylide coupling, acetylide-flip and formation of oxo and acetylide-bridged complexes. In presence of free acetylenes, unusual ligand systems arising from C─S bond formation are observed and under certain conditions, formation of quinones by coupling of acetylenes with carbon monoxide is facilitated.  相似文献   

19.
Reaction of [Fe2(CO)9] with a half molar amount of R2PYPR2 (Y = CH2, R = Ph, Me, OMe or OPri; Y = N(Et), R = OPh, OMe or OCH2; Y = N(Me), R = OPri or OEt) leads to the ready formation of a product which on irradiation with ultraviolet light rapidly decarbonylates to the heptacarbonyl derivative [Fe2(μ-CO)(CO)6{μ-R2PYPR2}]. Treatment of the latter with a slight excess of the appropriate ligand results, under photochemical conditions, in the formation of the dinuclear pentacarbonyl complex [Fe2(μ-CO)(C))4{μ-R2PYPR2}2] but under thermal conditions in the formation of the mononuclear species [Fe(CO)3{R2PYPR2}]. Reaction of [Ru3(CO)12] with an equimolar amount of (RO)2PN(R′)P(OR)2 (R′ = Me, R = Pri or Et; R′ = Et, R = Ph or Me) under either thermal or photochemical conditions produces [Ru3(CO)10{μ-(RO)2PN(OR)2}] which reacts further with excess (RO)2PN(R′)P(OR)2 on irradiation with ultraviolet light to afford the dinuclear compound [Ru2(μ-CO)(CO4{μ-(RO)2PN(R′)P(OR)2}2]. The molecular structure of [Ru2(μ-CO)(CO)4{μ-(MeO)2PN(Et)P(OMe)2}2], which has been determined by X-ray crystallography, is described.  相似文献   

20.
Reactions of Lithium Hydridosilylamides RR′(H)Si–N(Li)R″ with Chlorotrimethylsilane in Tetrahydrofuran and Nonpolar Solvents: N‐Silylation and/or Formation of Cyclodisilazanes The lithiumhydridosilylamides RR′(H)Si–N(Li)R″ ( 2 a : R = R′ = CHMe2, R″ = SiMe3; 2 b : R = R′ = Ph, R″ = SiMe3; 2 c : R = R′ = CMe3, R″ = SiMe3; 2 d : R = R′ = R″ = CMe3; 2 e : R = Me, R′ = Si(SiMe3)3, R″ = CMe3; 2 f – 2 h : R = R′ = Me, f : R″ = 2,4,6‐Me3C6H2, g : R″ = SiH(CHMe2)2, h : R″ = SiH(CMe3)2; 2 i : R = R′ = CMe3, R″ = SiH(CMe3)2) were prepared by reaction of the corresponding hydridosilylamines RR′(H)Si–NHR″ 2 a – 2 i with n‐butyllithium in equimolar ratio in n‐hexane. The unknown amines 1 e – 1 i and amides 2 f – 2 i have been characterized spectroscopically. The wave numbers of the Si–H stretching vibrations and 29Si–1H coupling constants of the amides are less than of the analogous amines. This indicates a higher hydride character for the hydrogen atom of the Si–H group in the amide in comparison to the amines. The 29Si‐NMR chemical shifts lie in the amides at higher field than in the amines. The amides 2 a – 2 c and 2 e – 2 g react with chlorotrimethylsilane in THF to give the corresponding N‐silylation products RR′(H)Si–N(SiMe3)R″ ( 3 a – 3 c , 3 e – 3 g ) in good yields. In the reaction of 2 i with chlorotrimethylsilane in molar ratio 1 : 2,33 in THF hydrogen‐chlorine exchange takes place and after hydrolytic work up of the reaction mixture [(Me3C)2(Cl)Si]2NH ( 5 a ) is obtained. The reaction of the amides 2 a – 2 c , 2 f and 2 g with chlorotrimethylsilane in m(p)‐xylene and/or n‐hexane affords mixtures of N‐substitution products RR′(H)Si–N(SiMe3)R″ ( 3 a – 3 c , 3 f , 3 g ) and cyclodisilazanes [RR′Si–NR″]2 ( 6 a – 6 c , 6 f , 6 g ) as the main products. In case of the reaction of 2 h the cyclodisilazane 6 h was obtained only. 2 c – 2 e show a very low reactivity toward chlorotrimetyhlsilane in m‐xylene and toluene resp.. In contrast to Me3SiCl the reactivity of 2 d toward Me3SiOSO2CF3 and Me2(H)SiCl is significant higher. 2 d react with Me3SiOSO2CF3 and Me2(H)SiCl in n‐hexane under N‐silylation to give RR′(H)Si–N(SiMe3)R″ ( 3 d ) and RR′(H)Si–N(SiHMe2)R″ ( 3 d ′) resp. The crystal structures of [Me2Si–NSiMe3]2 ( I ) ( 6 f , 6 g and 6 h ) have been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号