首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of spike frequency adaptation (SFA ) on the synchronous behavior of population neurons are investigated in electrically coupled networks with a scale-free property. By a computational approach, we corroborate that pairwise correlations between neurons would decrease if neurons exhibit the feature of SFA, which is similar to previous experimental observations. However, unlike the case of pairwise correlations, population activities of neurons show a rather complex variation mode: compared with those of non-adapted neurons, neurons in the networks having weak-degrees of SFA will impair population synchronizations; while neurons exhibiting strong- degrees of SFA will enhance population synchronizations. Moreover, a variation of coupling strength between neurons will not alter this phenomenon significantly, unless the coupling strength is too weak. Our results suggest that synchronous activity of electrically coupled population neurons is adaptation-dependent, and this adaptive feature may imply some coding strategies of neuronal populations.  相似文献   

2.
The comprehension of neuronal network functioning, from most basic mechanisms of signal transmission to complex patterns of memory and decision making, is at the basis of the modern research in experimental and computational neurophysiology. While mechanistic knowledge of neurons and synapses structure increased, the study of functional and effective networks is more complex, involving emergent phenomena, nonlinear responses, collective waves, correlation and causal interactions. Refined data analysis may help in inferring functional/effective interactions and connectivity from neuronal activity. The Transfer Entropy (TE) technique is, among other things, well suited to predict structural interactions between neurons, and to infer both effective and structural connectivity in small- and large-scale networks. To efficiently disentangle the excitatory and inhibitory neural activities, in the article we present a revised version of TE, split in two contributions and characterized by a suited delay time. The method is tested on in silico small neuronal networks, built to simulate the calcium activity as measured via calcium imaging in two-dimensional neuronal cultures. The inhibitory connections are well characterized, still preserving a high accuracy for excitatory connections prediction. The method could be applied to study effective and structural interactions in systems of excitable cells, both in physiological and in pathological conditions.  相似文献   

3.
We consider a general class of purely inhibitory and excitatory-inhibitory neuronal networks, with a general class of network architectures, and characterize the complex firing patterns that emerge. Our strategy for studying these networks is to first reduce them to a discrete model. In the discrete model, each neuron is represented as a finite number of states and there are rules for how a neuron transitions from one state to another. In this paper, we rigorously demonstrate that the continuous neuronal model can be reduced to the discrete model if the intrinsic and synaptic properties of the cells are chosen appropriately. In a companion paper [W. Just, S. Ahn, D. Terman. Minimal attractors in digraph system models of neuronal networks (preprint)], we analyse the discrete model.  相似文献   

4.
We study the discrete dynamics of a fully connected network of threshold elements interacting via dynamically evolving synapses displaying spike timing dependent plasticity. Dynamical mean-field equations, which become exact in the thermodynamical limit, are derived to study the behavior of the system driven with uncorrelated and correlated Gaussian noise input. We use correlated noise to verify that our model gives account to the fact that correlated noise provides stronger drive for synaptic modification. Further we find that stochastic independent input leads to a noise dependent transition to the coherent state where all neurons fire together, most notably there exists an optimal noise level for the enhancement of synaptic potentiation in our model.  相似文献   

5.
We study a stochastic neural-network model in which neurons and synapses change with a priori probability p and 1–p, respectively, in the limit p0. This implies neuron activity competing with fast fluctuations of the synaptic connections—in fact, random oscillations around values given by a learning (for example, Hebb's) rule. The consequences for the system performance of a dynamics constantly checking at random the set of memorized patterns is thus studied both analytically and numerically. We describe various nonequilibrium phase transitions whose nature depends on the properties of fluctuations. We find, in particular, that under rather general conditions locally stable mixture states do not occur, and pattern recognition and retrieval processes are substantially improved for some classes of synaptic fluctuations.  相似文献   

6.
We examine how noise interacts with encoding mechanisms of neuronal stimulus in a cold receptor. From ISI series and bifurcation diagrams it is shown that there are considerable differences in interval distributions and impulse patterns caused by purely deterministic simulations and noisy simulations. The ISI-distance can be used as an effective and powerful way to measure the noise effects on spike trains of the cold receptor quantitatively. It is also found that spike trains observed in cold receptors can be more strongly affected by noise for low temperatures than for high temperatures in some aspects; meanwhile, the spike train has greater variability with increasing noise intensity.  相似文献   

7.
8.
The mutual coupling between neurons in a realistic neuronal system is much complex, and a two-layer neuronal network is designed to investigate the transition of electric activities of neurons. The Hindmarsh-Rose neuron model is used to describe the local dynamics of each neuron, and neurons in the two-layer networks are coupled in dislocated type. The coupling intensity between two-layer networks, and the coupling ratio (Pro), which defines the percentage involved in the coupling in each layer, are changed to observe the synchronization transition of collective behaviors in the two-layer networks. It is found that the two-layer networks of neurons becomes synchronized with increasing the coupling intensity and coupling ratio (Pro) beyond certain thresholds. An ordered wave in the first layer is useful to wake up the rest state in the second layer, or suppress the spatiotemporal state in the second layer under coupling by generating target wave or spiral waves. And the scheme of dislocation coupling can be used to suppress spatiotemporal chaos and excite quiescent neurons.  相似文献   

9.
Synaptic plasticity is characterized by remodeling of existing synapses caused by strengthening and/or weakening of connections. This is represented by long-term potentiation (LTP) and long-term depression (LTD). The occurrence of a presynaptic spike (or action potential) followed by a temporally nearby postsynaptic spike induces LTP; conversely, if the postsynaptic spike precedes the presynaptic spike, it induces LTD. This form of synaptic plasticity induction depends on the order and timing of the pre- and postsynaptic action potential, and has been termed spike time-dependent plasticity (STDP). After an epileptic seizure, LTD plays an important role as a depressor of synapses, which may lead to their complete disappearance together with that of their neighboring connections until days after the event. Added to the fact that after an epileptic seizure the network seeks to regulate the excess activity through two key mechanisms: depressed connections and neuronal death (eliminating excitatory neurons from the network), LTD becomes of great interest in our study. To investigate this phenomenon, we develop a biologically plausible model that privileges LTD at the triplet level while maintaining the pairwise structure in the STPD and study how network dynamics are affected as neuronal damage increases. We find that the statistical complexity is significantly higher for the network where LTD presented both types of interactions. While in the case where the STPD is defined with purely pairwise interactions an increase is observed as damage becomes higher for both Shannon Entropy and Fisher information.  相似文献   

10.
The effect of diversity on dynamics of coupled FitzHugh-Nagumo neurons on complex networks is numerically investigated, where each neuron is subjected to an external subthreshold signal. With the diversity the network is a mixture of excitable and oscillatory neurons, and the diversity is determined by the variance of the system's parameter. The complex network is constructed by randomly adding long-range connections (shortcuts) on a nearest-neighbouring coupled one-dimensional chain. Numerical results show that external signals are maximally magnified at an intermediate value of the diversity, as in the case of well-known stochastic resonance, burthermore, the effects of the number of shortcuts and coupled strength on the diversity-induced phenomena are also discussed. These findings exhibit that the diversity may play a constructive role in response to external signal, and highlight the importance of the diversity on such complex networks.  相似文献   

11.
Realistic networks display heterogeneous transmission delays. We analyze here the limits of large stochastic multi-populations networks with stochastic coupling and random interconnection delays. We show that depending on the nature of the delays distributions, a quenched or averaged propagation of chaos takes place in these networks, and that the network equations converge towards a delayed McKean-Vlasov equation with distributed delays. Our approach is mostly fitted to neuroscience applications. We instantiate in particular a classical neuronal model, the Wilson and Cowan system, and show that the obtained limit equations have Gaussian solutions whose mean and standard deviation satisfy a closed set of coupled delay differential equations in which the distribution of delays and the noise levels appear as parameters. This allows to uncover precisely the effects of noise, delays and coupling on the dynamics of such heterogeneous networks, in particular their role in the emergence of synchronized oscillations. We show in several examples that not only the averaged delay, but also the dispersion, govern the dynamics of such networks.  相似文献   

12.
Dynamical networks are important models for the behaviour of complex systems, modelling physical, biological and societal systems, including the brain, food webs, epidemic disease in populations, power grids and many other. Such dynamical networks can exhibit behaviour in which deterministic chaos, exhibiting unpredictability and disorder, coexists with synchronisation, a classical paradigm of order. We survey the main theory behind complete, generalised and phase synchronisation phenomena in simple as well as complex networks and discuss applications to secure communications, parameter estimation and the anticipation of chaos.  相似文献   

13.
In a multipartite random energy model, made of a number of coupled generalised random energy models (GREMs), we determine the joint law of the overlaps in terms of the ones of the single GREMs. This provides the simplest example of the so-called overlap synchronisation.  相似文献   

14.
Image encryption is a confidential strategy to keep the information in digital images from being leaked. Due to excellent chaotic dynamic behavior, self-feedbacked Hopfield networks have been used to design image ciphers. However, Self-feedbacked Hopfield networks have complex structures, large computational amount and fixed parameters; these properties limit the application of them. In this paper, a single neuronal dynamical system in self-feedbacked Hopfield network is unveiled. The discrete form of single neuronal dynamical system is derived from a self-feedbacked Hopfield network. Chaotic performance evaluation indicates that the system has good complexity, high sensitivity, and a large chaotic parameter range. The system is also incorporated into a framework to improve its chaotic performance. The result shows the system is well adapted to this type of framework, which means that there is a lot of room for improvement in the system. To investigate its applications in image encryption, an image encryption scheme is then designed. Simulation results and security analysis indicate that the proposed scheme is highly resistant to various attacks and competitive with some exiting schemes.  相似文献   

15.
The Mansouri-Sexl class of test theories of special relativity has motivated various experiments to observe or limit the difference between slow clock transport and Einstein synchronisation. These do not constitute tests of the isotropy of the one-way speed of light, since the latter is conventional. We discuss the effects of the conventionality of synchrony in the preferred frame, as well as the laboratory frame, within the Mansouri-Sexl formalism. We also consider the mutual inter-relationships of both synchrony conventions with measurements of the one-way speed of light and of time dilation factors.  相似文献   

16.
We use a generic model for type-I excitability (known as the SNIPER or SNIC model) to describe the local dynamics of nodes within a network in the presence of non-zero coupling delays. Utilising the method of the Master Stability Function, we investigate the stability of the zero-lag synchronised dynamics of the network nodes and its dependence on the two coupling parameters, namely the coupling strength and delay time. Unlike in the FitzHugh-Nagumo model (a model for type-II excitability), there are parameter ranges where the stability of synchronisation depends on the coupling strength and delay time. One important implication of these results is that there exist complex networks for which the adding of inhibitory links in a small-world fashion may not only lead to a loss of stable synchronisation, but may also restabilise synchronisation or introduce multiple transitions between synchronisation and desynchronisation. To underline the scope of our results, we show using the Stuart-Landau model that such multiple transitions do not only occur in excitable systems, but also in oscillatory ones.  相似文献   

17.
In this paper, we rigorously prove that unpredictable oscillations take place in the dynamics of Hopfield-type neural networks (HNNs) when synaptic connections, rates and external inputs are modulo periodic unpredictable. The synaptic connections, rates and inputs are synchronized to obtain the convergence of outputs on the compact subsets of the real axis. The existence, uniqueness, and exponential stability of such motions are discussed. The method of included intervals and the contraction mapping principle are applied to attain the theoretical results. In addition to the analysis, we have provided strong simulation arguments, considering that all the assumed conditions are satisfied. It is shown how a new parameter, degree of periodicity, affects the dynamics of the neural network.  相似文献   

18.
By using a short pulse broad band (2 GHz) CO2 laser around a single well detuned line (15 GHz), it is possible to analyse, with sub-ns resolution, the dynamics of a broadband FIR Raman scattering. When the Raman gain is large, well modulated ns emissions are detected also for resonant lines. Generally the pseudo cavity effects, are always present. They have important effects on the gain, in particular an aligned input window has a large positive effect on the Raman gain and on the generation of mode-locked FIR forward emissions  相似文献   

19.
Recent studies of cortical neurons driven by fluctuating currents revealed cutoff frequencies for action potential encoding of several hundred Hz. Theoretical studies of biophysical neuron models have predicted a much lower cutoff frequency of the order of average firing rate or the inverse membrane time constant. The biophysical origin of the observed high cutoff frequencies is thus not well understood. Here we introduce a neuron model with dynamical action potential generation, in which the linear response can be analytically calculated for uncorrelated synaptic noise. We find that the cutoff frequencies increase to very large values when the time scale of action potential initiation becomes short.  相似文献   

20.
This article reviews research conducted over the past 15 years at the intersection of the physics and mechanics of a deformable solid on the basis of the concept that plastic deformation and failure represent the evolution of shear-stability loss of a loaded material at various scale levels. This research has led to the founding of a new scientific discipline: the physical mesomechanics of materials, in which a deformable solid is regarded as a multilevel self-organizing system. The development of mechanisms and stages of plastic deformation at different scale levels conforms to the principle of scale invariance. This qualitatively changes the methods of describing the plastic deformation and failure of solids. The most pressing areas of research in the physical mesomechanics of materials are noted; these will determine the basic trends in research on the strength of solids in the next decade. Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 7–34, January, 1998.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号