首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, Blecher and Kashyap have generalized the notion of W *-modules over von Neumann algebras to the setting where the operator algebras are σ closed algebras of operators on a Hilbert space. They call these modules weak* rigged modules. We characterize the weak* rigged modules over nest algebras. We prove that Y is a right weak* rigged module over a nest algebra Alg(M){\rm{Alg}(\mathcal M)} if and only if there exists a completely isometric normal representation F{\Phi } of Y and a nest algebra Alg(N){\rm{Alg}(\mathcal N)} such that Alg(N) F(Y)Alg(M) ì F(Y){\rm{Alg}(\mathcal N) \Phi (Y)\rm{Alg}(\mathcal M)\subset \Phi (Y)} while F(Y){\Phi (Y)} is implemented by a continuous nest homomorphism from M{\mathcal M} onto N{\mathcal N} . We describe some properties which are preserved by continuous CSL homomorphisms.  相似文献   

2.
We consider the degree/diameter problem for graphs embedded in a surface, namely, given a surface Σ and integers Δ and k, determine the maximum order N(Δ,k,Σ) of a graph embeddable in Σ with maximum degree Δ and diameter k. We introduce a number of constructions which produce many new largest known planar and toroidal graphs. We record all these graphs in the available tables of largest known graphs. Given a surface Σ of Euler genus g and an odd diameter k, the current best asymptotic lower bound for N(Δ,k,Σ) is given by $$\sqrt{\frac{3}{8}}g \Delta^{\lfloor k/2 \rfloor}.$$ Our constructions produce new graphs of order $$\left\{\begin{array}{ll}6 \Delta^{\lfloor k/2 \rfloor} \qquad \qquad \qquad \qquad {\rm if \Sigma\;is\;the\;Klein\;bottle} \\ \left(\frac{7}{2} + \sqrt{6g + \frac{1}{4}}\right) \Delta^{\lfloor k/2 \rfloor} \quad {\rm otherwise},\end{array}\right.$$ thus improving the former value.  相似文献   

3.
It follows from a theorem of Gromov that the stable systolic category catstsys M{\rm cat}_{\rm stsys} M of a closed manifold M is bounded from below by cl\mathbbQ M{\rm cl}_{\mathbb{Q}} M, the rational cup-length of M [Ka07]. We study the inequality in the opposite direction. In particular, combining our results with Gromov’s theorem, we prove the equality catstsys M = cl\mathbbQ M{\rm cat}_{\rm stsys} M = {\rm cl}_{\mathbb{Q}} M for simply connected manifolds of dimension ≤ 7.  相似文献   

4.
Mixed elliptic problems for differential operators A in a domain Ω with smooth boundary Y are studied in theform $$ Au = f \;\; {\rm in} \;\; {\rm \Omega} \, , \quad T_{\pm}u = g_{\pm} \;\; {\rm on} \;\; Y_{\pm} \, , $$ where Y± ? Y are manifolds with a common boundary Z, such that YY+ = Y and YY+ = Z, with boundary conditions T± on Y± (with smooth coefficients up to Z from the respective side) satisfying the Shapiro–Lopatinskij condition. We consider such problems in standard Sobolev spaces and characterise natural extra conditions on the interface Z with an analogue of Shapiro–Lopatinskij ellipticity for an associated transmission problem on the boundary; then the extended operator is Fredholm. The transmission operators on the boundary with respect to Z belong to a complete pseudo‐differential calculus, a modification of the algebra of boundary value problems without the transmission property. We construct parametrices of elliptic elements in that calculus, and we obtain parametrices of the original mixed problems under additional conditions on the interface. We consider the Zaremba problem and other mixed problems for the Laplace operator, determine the number of extra conditions and calculate the index of associated Fredholm operators. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
6.
Let M be a module over the commutative ring R. The finitary automorphism group of M over R is and the Artinian-finitary automorphism group of M over R is We investigate further the surprisingly close relationship between these two types of automorphism groups. Their group theoretic properties seem practically identical.  相似文献   

7.
We consider non-white Wishart ensembles , where X is a p×N random matrix with i.i.d. complex standard Gaussian entries and Σ is a covariance matrix, with fixed eigenvalues, close to the identity matrix. We prove that the largest eigenvalue of such random matrix ensembles exhibits a universal behavior in the large-N limit, provided Σ is “close enough” to the identity matrix. If not, we identify the limiting distribution of the largest eigenvalues, focusing on the case where the largest eigenvalues almost surely exit the support of the limiting Marchenko-Pastur's distribution.  相似文献   

8.
Let M be a module over the commutative ring R. The finitary automorphism group of M over R is FAutRM = {g ? AutRM :M(g-1) is R-Noetherian}{\rm FAut}_RM =\{g\in{\rm Aut}_RM :M(g-1)\ {\rm is}\ R\hbox{-}{\rm Noetherian}\} and the Artinian-finitary automorphism group of M over R is F1AutRM = {g ? AutRM : M(g-1) is R-Artinian}.{\rm F}_1{\rm Aut}_RM = \{g\in{\rm Aut}_RM : M(g-1)\ {\rm is}\ R\hbox{-}{\rm Artinian}\}. We investigate further the surprisingly close relationship between these two types of automorphism groups. Their group theoretic properties seem practically identical.  相似文献   

9.
Suppose that $(R, m)$ is a noetherian local ring and that E is the injective hull of the residue class field $R/m$. Suppose that M is an R-module, $M^0 = {\mbox{\rm Hom}}_R (M, E)$ is the Matlis dual of M and ${\mbox{\rm Coass}(M)} = {\mbox{\rm Ass} (M^0)}$. M is called cotorsion if every prime ideal ${\frak p} \in {\mbox{\rm Coass}}(M)$ is regular; it is called strongly cotorsion if $\cap {\rm Coass}(M)$ is regular. In the first part, we completely describe the structure of the strongly cotorsion modules over R, use this to determine the coassociated prime ideals of the bidual $M^{00}$, and give in the second part criteria for a cotorsion module being strongly cotorsion. Received: 7 March 2002  相似文献   

10.
Let M be a non-orientable surface with Euler characteristic χ(M) ≤ −2. We consider the moduli space of flat SU(2)-connections, or equivalently the space of conjugacy classes of representations
\mathfrakX (M) = Hom (p1 (M), SU (2)) / SU (2).\mathfrak{X} (M) = {\rm Hom} (\pi_1 (M), {\rm SU} (2)) / {\rm SU} (2).  相似文献   

11.
For a wide class of Hermitian random matrices, the limit distribution of the eigenvalues close to the largest one is governed by the Airy point process. In such ensembles, the limit distribution of the k th largest eigenvalue is given in terms of the Airy kernel Fredholm determinant or in terms of Tracy–Widom formulas involving solutions of the Painlevé II equation. Limit distributions for quantities involving two or more near‐extreme eigenvalues, such as the gap between the k th and the ℓth largest eigenvalue or the sum of the k largest eigenvalues, can be expressed in terms of Fredholm determinants of an Airy kernel with several discontinuities. We establish simple Tracy–Widom type expressions for these Fredholm determinants, which involve solutions to systems of coupled Painlevé II equations, and we investigate the asymptotic behavior of these solutions.  相似文献   

12.
The purpose of this paper is to characterize all matroids M that satisfy the following minimax relation: for any nonnegative integral weight function w defined on E(M),
Our characterization contains a complete solution to a research problem on 2-edge-connected subgraph polyhedra posed by Cornuéjols, Fonlupt, and Naddef in 1985, which was independently solved by Vandenbussche and Nemhauser in Vandenbussche and Nemhauser (J. Comb. Optim. 9:357–379, 2005). W. Zang’s research partially supported by the Research Grants Council of Hong Kong.  相似文献   

13.
14.
Let ${\mathfrak{a}}$ be an ideal of a commutative Noetherian ring R and M a finitely generated R-module. It is shown that ${{\rm Ann}_R(H_{\mathfrak{a}}^{{\rm dim} M}(M))= {\rm Ann}_R(M/T_R(\mathfrak{a}, M))}$ , where ${T_R(\mathfrak{a}, M)}$ is the largest submodule of M such that ${{\rm cd}(\mathfrak{a}, T_R(\mathfrak{a}, M)) < {\rm cd}(\mathfrak{a}, M)}$ . Several applications of this result are given. Among other things, it is shown that there exists an ideal ${\mathfrak{b}}$ of R such that ${{\rm Ann}_R(H_{\mathfrak{a}}^{{\rm dim} M}(M))={\rm Ann}_R(M/H_{\mathfrak{b}}^{0}(M))}$ . Using this, we show that if ${ H_{\mathfrak{a}}^{{\rm dim} R}(R)=0}$ , then ${{{\rm Att}_R} H^{{\rm dim} R-1}_{\mathfrak a}(R)= \{\mathfrak{p} \in {\rm Spec} R | \,{\rm cd}(\mathfrak{a}, R/\mathfrak{p}) = {\rm dim} R-1\}.}$ These generalize the main results of Bahmanpour et al. (see [2, Theorem 2.6]), Hellus (see [7, Theorem 2.3]), and Lynch (see [10, Theorem 2.4]).  相似文献   

15.
We integrate the Lifting cocycles Y2n+1, Y2n+3, Y2n+5,? ([Sh1,2]) \Psi_{2n+1}, \Psi_{2n+3}, \Psi_{2n+5},\ldots\,([\rm Sh1,2]) on the Lie algebra Difn of holomorphic differential operators on an n-dimensional complex vector space to the cocycles on the Lie algebra of holomorphic differential operators on a holomorphic line bundle l \lambda on an n-dimensional complex manifold M in the sense of Gelfand--Fuks cohomology [GF] (more precisely, we integrate the cocycles on the sheaves of the Lie algebras of finite matrices over the corresponding associative algebras). The main result is the following explicit form of the Feigin--Tsygan theorem [FT1]:¶¶ H·Lie(\frak g\frak lfin(Difn);\Bbb C) = ù·(Y2n+1, Y2n+3, Y2n+5,? ) H^\bullet_{\rm Lie}({\frak g}{\frak l}^{\rm fin}_\infty({\rm Dif}_n);{\Bbb C}) = \wedge^\bullet(\Psi_{2n+1}, \Psi_{2n+3}, \Psi_{2n+5},\ldots\,) .  相似文献   

16.
On a four-dimensional closed spin manifold (M 4, g), the eigenvalues of the Dirac operator can be estimated from below by the total σ2-scalar curvature of M 4 as follows: Equality implies that (M 4, g) is a round sphere and the corresponding eigenspinors are Killing spinors.Dedicated to Professor Wang Guangyin on the occasion of his 80th birthday.  相似文献   

17.
Let R be a noetherian ring, \mathfraka{\mathfrak{a}} an ideal of R, and M an R-module. We prove that for a finite module M, if Hi\mathfraka(M){{\rm H}^{i}_{\mathfrak{a}}(M)} is minimax for all i ≥ r ≥ 1, then Hi\mathfraka(M){{\rm H}^{i}_{\mathfrak{a}}(M)} is artinian for i ≥ r. A local–global principle for minimax local cohomology modules is shown. If Hi\mathfraka(M){{\rm H}^{i}_{\mathfrak{a}}(M)} is coatomic for i ≤ r (M finite) then Hi\mathfraka(M){{\rm H}^{i}_{\mathfrak{a}}(M)} is finite for i ≤ r. We give conditions for a module which is locally minimax to be a minimax module. A non-vanishing theorem and some vanishing theorems are proved for local cohomology modules.  相似文献   

18.
We consider well‐posedness of the aggregation equation ∂tu + div(uv) = 0, v = −▿K * u with initial data in \input amssym ${\cal P}_2 {\rm (\Bbb R}^d {\rm )} \cap L^p ({\Bbb R}^d )$ in dimensions 2 and higher. We consider radially symmetric kernels where the singularity at the origin is of order |x|α, α > 2 − d, and prove local well‐posedness in \input amssym ${\cal P}_2 { (\Bbb R}^d {\rm )} \cap L^p ({\Bbb R}^d )$ for sufficiently large p < ps. In the special case of K(x) = |x|, the exponent ps = d/(d = 1) is sharp for local well‐posedness in that solutions can instantaneously concentrate mass for initial data in \input amssym ${\cal P}_2 { (\Bbb R}^d {\rm )} \cap L^p ({\Bbb R}^d )$ with p < ps. We also give an Osgood condition on the potential K(x) that guarantees global existence and uniqueness in \input amssym ${\cal P}_2 { (\Bbb R}^d {\rm )} \cap L^p ({\Bbb R}^d )$ . © 2010 Wiley Periodicals, Inc.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号